You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(55) 
_{Feb}
(11) 
_{Mar}
(30) 
_{Apr}
(19) 
_{May}
(14) 
_{Jun}
(21) 
_{Jul}
(30) 
_{Aug}
(48) 
_{Sep}
(31) 
_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 







1

2

3
(6) 
4

5
(1) 
6
(1) 
7

8

9
(2) 
10
(1) 
11

12

13
(1) 
14
(2) 
15

16

17

18

19

20
(6) 
21
(5) 
22

23

24
(2) 
25
(3) 
26

27
(2) 
28
(3) 

From: SourceForge.net <noreply@so...>  20030206 12:04:56

Bugs item #681613, was opened at 20030206 12:10 You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=681613&group_id=4933 Category: None Group: None Status: Open Resolution: None Priority: 5 Submitted By: Martin Rubey (kratt5) Assigned to: Nobody/Anonymous (nobody) Summary: 3 solver bugs Initial Comment: GCL (GNU Common Lisp) Version(2.5.0) Sun Nov 17 15:58:09 CET 2002 Licensed under GNU Library General Public License Contains Enhancements by W. Schelter Maxima 5.9.0rc3 http://maxima.sourceforge.net Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter. This is a development version of Maxima. The function bug_report() provides bug reporting information. (C1) EquationP(e):=if part(e,0)="=" then true else false$ (C2) load("/usr/labri/rubey/maxima/src/binarygcl/comm.o")$ (C3) load("/usr/labri/rubey/maxima/src/binarygcl/mutils.o")$ (C4) load("/usr/labri/rubey/maxima/src/binarygcl/set.o")$ (C5) load("algebra/solver/misc")$ (C6) load("algebra/solver/solver")$ (C7) display2d:false$ (C8) trace(solve)$ (C9) solver([ut*(u^(l+1)+u+1) = 0,1t*((l+1)*u^l+1) = 0],[u,t],[l]); 1 Enter SOLVE [(l1)*t*u^lt+1,u] Is l an integer? y; 1 Exit SOLVE [u = (1/(l*t+t)t/(l*t+t))^(1/l)] 1 Enter SOLVE [((l*(((t1)/((l+1)*t))^(1/l)+1)+1)*tl*((t1)/((l+1)*t))^(1/l))/(l+1),t] 1 Exit SOLVE [t = l*((t1)/((l+1)*t))^(1/l)/(l*((t1)/((l+1)*t))^(1/l)+l+1)] (D9) [[u = ((t1)/((l+1)*t))^(1/l), [((l*(((t1)/((l+1)*t))^(1/l)+1)+1)*tl*((t1)/((l+1)*t))^(1/l)) /(l+1)]]] (should be something like t = l^(l/(l+1))/(l^(l/(l+1))+l+1), u = l^(1/(l+1))) The second item of the solution does not make t explicit, although solve did... 2. second bug (I think this is known, but I'm not sure) the second time solver is invoked, it is silently assumed that l is an integer. I think this assumption should be removed... 3. third bug don't use i or k as one of your variables: (C1) EquationP(e):=if part(e,0)="=" then true else false$ (C1) (C2) load("/usr/labri/rubey/maxima/src/binarygcl/comm.o")$ (C3) load("/usr/labri/rubey/maxima/src/binarygcl/mutils.o")$ (C4) load("/usr/labri/rubey/maxima/src/binarygcl/set.o")$ (C5) load("algebra/solver/misc")$ (C6) load("algebra/solver/solver")$ (C7) display2d:false$ (C8) trace(solve)$ (C9) solver([ut*(u^(k+1)+1)=0,1(k+1)*t*u^k=0],[u,t]); 1 Enter SOLVE [(k1)*t*u^k+1,t] 1 Exit SOLVE [t = 1/((k+1)*u^k)] Warning: GET(OP(EXPR),'Valuation) was declared mode FIXNUM, has value: FALSE 1 Enter SOLVE [(2*u^31)/(3*u^2),u] ******* obviously, this is wrong here ******** who set k=2 ??? This might have to do with dynamic scope  in valuationsolver k is used, and if I leave away the parameter k, i get the following message: Warning: GET(OP(EXPR),'Valuation) was declared mode FIXNUM, has value: FALSE *********************************************** 1 Exit SOLVE [u = (SQRT(3)*%I1)/(2*2^(1/3)),u = (SQRT(3)*%I+1)/(2*2^(1/3)),u = 1/2^(1/3)] (D9) [[u = (SQRT(3)*%I1)/(2*2^(1/3)), t = 2^(4*k/3)/((SQRT(3)*%I1)^k*k+(SQRT(3)*%I1)^k)], [u = (SQRT(3)*%I+1)/(2*2^(1/3)), t = 2^(4*k/3)/((SQRT(3)*%I1)^k*k+(SQRT(3)*%I1)^k)], [u = 1/2^(1/3),t = 2^(k/3)/(k+1)]] ********************* similar trouble for i ********************* (C10) solver([ut*(u^(i+1)+1)=0,1(i+1)*t*u^i=0],[u,t],[i]); 1 Enter SOLVE [(i1)*t*u^i+1,t] 1 Exit SOLVE [t = 1/((i+1)*u^i)] 1 Enter SOLVE [(i*u^(i+1)1)/((i+1)*u^i),u] Is i an integer? y; 1 Exit SOLVE [u = 1/i^(1/(i+1))] (D10) [[u = 1,t = 1/2]] (with l in place of i or k the result is correct: solver([ut*(u^(l+1)+1)=0,1(l+1)*t*u^l=0],[u,t],[l]); (D15) [[u = 1/l^(1/(l+1)),t = l^(l/(l+1))/(l+1)]] Martin  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=681613&group_id=4933 