|
From: James P. <zu...@zu...> - 2009-03-20 12:23:23
Attachments:
AutoscaledText.py
|
All,
Attached, and below, is public domain code for making variable-sized
plots with autoscaled text that exactly fits the available visual plot
space, useful for web sites where users choose output files with different
sizes. Examples are at the bottom of the file.
James R. Phillips
2548 Vera Cruz Drive
Birmingham, AL 35235 USA
email: zu...@zu...
http://zunzun.com
# Entered into the public domain 20 March 2009
# James R. Phillips
# 2548 Vera Cruz Drive
# Birmingham, AL 35235 USA
# email: zu...@zu...
# http://zunzun.com
import numpy as np
import math, matplotlib
matplotlib.use('Agg') # must be used prior to the next two statements
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
def DetermineOnOrOffFromString(in_String):
tempString = in_String.split('_')[-1:][0].upper() # allows any amount of
prefacing text
if tempString == 'ON':
return True
return False
def DetermineScientificNotationFromString(inData, in_String):
tempString = in_String.split('_')[-1:][0].upper() # allows any amount of
prefacing text
if tempString == 'ON':
return True
elif tempString == 'OFF':
return False
else: # must be AUTO
minVal = np.abs(np.min(inData))
maxVal = np.abs(np.max(inData))
deltaVal = np.abs(maxVal - minVal)
scientificNotation = False
if (maxVal > 100.0) or (minVal < -100.0) or (deltaVal < .05):
scientificNotation = True
return scientificNotation
def CommonPlottingCode(in_WidthInPixels, in_HeightInPixels, in_XName,
in_YName, in_UseOffsetIfNeeded, in_X_UseScientificNotationIfNeeded,
in_Y_UseScientificNotationIfNeeded, in_Left, in_Bottom, in_Right, in_Top): #
default to lots of room around graph
# a litle more room between x axis and tick mark labels, so not text
overlap at the bottom left corner - set this before other calls
matplotlib.rcParams['xtick.major.pad'] = 5+ (float(in_HeightInPixels) /
100.0) # minimum + some scaled
fig = plt.figure(figsize=(float(in_WidthInPixels ) / 100.0,
float(in_HeightInPixels ) / 100.0), dpi=100)
fig.subplotpars.update(in_Left, in_Bottom, in_Right, in_Top)
ax = fig.add_subplot(111, frameon=True)
# white background, almost no border space
fig.set_facecolor('w')
xFormatter = fig.gca().xaxis.get_major_formatter()
xFormatter._useOffset = in_UseOffsetIfNeeded
xFormatter.set_scientific(in_X_UseScientificNotationIfNeeded)
fig.gca().xaxis.set_major_formatter(xFormatter)
yFormatter = fig.gca().yaxis.get_major_formatter()
yFormatter._useOffset = in_UseOffsetIfNeeded
yFormatter.set_scientific(in_Y_UseScientificNotationIfNeeded)
fig.gca().yaxis.set_major_formatter(yFormatter)
# Scale text to imagesize. Text sizes originally determined at image
size of 500 x 400
widthRatioForTextSize = float(in_WidthInPixels) / 500.0
heightRatioForTextSize = float(in_HeightInPixels) / 400.0
for xlabel_i in ax.get_xticklabels():
xlabel_i.set_fontsize(xlabel_i.get_fontsize() *
heightRatioForTextSize)
xOffsetText = fig.gca().xaxis.get_offset_text()
xOffsetText.set_fontsize(xOffsetText.get_fontsize() *
heightRatioForTextSize * 0.9)
for ylabel_i in ax.get_yticklabels():
ylabel_i.set_fontsize(ylabel_i.get_fontsize() *
widthRatioForTextSize)
yOffsetText = fig.gca().yaxis.get_offset_text()
yOffsetText.set_fontsize(yOffsetText.get_fontsize() *
heightRatioForTextSize * 0.9)
x_label = ax.set_xlabel(in_XName)
y_label = ax.set_ylabel(in_YName)
x_label._fontproperties._size = x_label._fontproperties._size *
heightRatioForTextSize
y_label._fontproperties._size = y_label._fontproperties._size *
widthRatioForTextSize
plt.grid(True) # call this just before returning
return fig, ax
def YieldNewExtentsAndNumberOfMajor_X_TickMarks(fig, ax, in_WidthInPixels,
in_HeightInPixels, in_OffsetUsed):
# draw everything so items can be measured for size
canvas = plt.get_current_fig_manager().canvas
canvas.draw()
# some preliminary info
xLabelPoints =
ax.set_xlabel(ax.get_xlabel()).get_window_extent().get_points() # [ [x,y],
[x,y] ]
yLabelPoints =
ax.set_ylabel(ax.get_ylabel()).get_window_extent().get_points() # [ [x,y],
[x,y] ], rotated 90 degrees
xTickZeroPoints =
ax.get_xticklabels()[0].get_window_extent().get_points()
yTickZeroPoints =
ax.get_yticklabels()[0].get_window_extent().get_points()
xTickIndexPoints =
ax.get_xticklabels()[len(ax.get_xticklabels())-1].get_window_extent().get_points()
yTickIndexPoints =
ax.get_yticklabels()[len(ax.get_yticklabels())-1].get_window_extent().get_points()
currentPoints = ax.bbox.get_points()
maxLeft = currentPoints[0][0]
maxBottom = currentPoints[0][1]
maxRight = currentPoints[1][0]
maxTop = currentPoints[1][1]
# find the most left-ward location
if xTickZeroPoints[0][0] < maxLeft:
maxLeft = xTickZeroPoints[0][0]
if yTickZeroPoints[0][0] < maxLeft:
maxLeft = yTickZeroPoints[0][0]
if yTickIndexPoints[0][0] < maxLeft:
maxLeft = yTickIndexPoints[0][0]
if xLabelPoints[0][0] < maxLeft:
maxLeft = xLabelPoints[0][0]
if yLabelPoints[0][0] < maxLeft: # 90 degrees
maxLeft = yLabelPoints[0][0]
# find the most right-ward location
if xTickIndexPoints[1][0] > maxRight:
maxRight = xTickIndexPoints[1][0]
if xLabelPoints[1][0] > maxRight:
maxRight = xLabelPoints[1][0]
# find the most bottom-ward location
if xTickZeroPoints[0][1] < maxBottom:
maxBottom = xTickZeroPoints[0][1]
if xLabelPoints[0][1] < maxBottom:
maxBottom = xLabelPoints[0][1]
if yLabelPoints[0][1] < maxBottom:
maxBottom = yLabelPoints[0][1]
# find the most top-ward location
if yTickIndexPoints[1][1] > maxTop:
maxTop = yTickIndexPoints[1][1]
if True == in_OffsetUsed: # could not find a better way to get this
yp = ax.get_yticklabels()[0].get_window_extent().get_points()
maxTop += yp[1][1] - yp[0][1]
newLeft = ax.bbox._bbox.get_points()[0][0] - (float(maxLeft) /
float(in_WidthInPixels)) + 0.01
newBottom = ax.bbox._bbox.get_points()[0][1] - (float(maxBottom) /
float(in_HeightInPixels)) + 0.01
newRight = ax.bbox._bbox.get_points()[1][0] + (1.0 - (float(maxRight) /
float(in_WidthInPixels))) - 0.01
newTop = ax.bbox._bbox.get_points()[1][1] + (1.0 - (float(maxTop) /
float(in_HeightInPixels))) - 0.01
# now redraw and check number of X tick marks
canvas.draw()
# Calculate major number of X tick marks based on label size
totalWidth = 0.0
maxWidth = 0.0
numberOfMajor_X_TickMarks = len(ax.get_xticklabels())
for xlabel_i in ax.get_xticklabels():
w = xlabel_i.get_window_extent().get_points() # the drawn text
bounding box corners as numpy array of [x,y], [x,y]
width = w[1][0] - w[0][0]
totalWidth += width
if width > maxWidth:
maxWidth = width
if totalWidth > (0.95 * ((newRight - newLeft) *
float(in_WidthInPixels))): # 0.95 for some spacing between tick labels
numberOfMajor_X_TickMarks = int(math.floor((0.95 * ((newRight -
newLeft) * float(in_WidthInPixels))) / maxWidth))
return (newLeft, newBottom, newRight, newTop,
numberOfMajor_X_TickMarks,)
def HistogramPlot(in_DataToPlot, in_FileNameAndPath, in_DataName,
in_FillColor, in_WidthInPixels, in_HeightInPixels, in_UseOffsetIfNeeded,
in_UseScientificNotationIfNeeded):
# decode ends of strings ('XYZ_ON', 'XYZ_OFF', 'XYZ_AUTO', etc.) to
boolean values
scientificNotation =
DetermineScientificNotationFromString(in_DataToPlot,
in_UseScientificNotationIfNeeded)
useOffsetIfNeeded = DetermineOnOrOffFromString(in_UseOffsetIfNeeded)
numberOfBins = len(in_DataToPlot) / 2
if numberOfBins > 25:
numberOfBins = 25
if numberOfBins < 5:
numberOfBins = 5
# first with 0, 0, 1, 1
fig, ax = CommonPlottingCode(in_WidthInPixels, in_HeightInPixels,
in_DataName, 'Frequency', useOffsetIfNeeded, scientificNotation, False, 0.0,
0.0, 1.0, 1.0)
# histogram of data
n, bins, patches = ax.hist(in_DataToPlot, numberOfBins,
facecolor=in_FillColor)
# some axis space at the top of the graph
ylim = ax.get_ylim()
if ylim[1] == max(n):
ax.set_ylim(0.0, ylim[1] + 1)
newLeft, newBottom, newRight, newTop, numberOfMajor_X_TickMarks =
YieldNewExtentsAndNumberOfMajor_X_TickMarks(fig, ax, in_WidthInPixels,
in_HeightInPixels, False)
# now with scaled
fig, ax = CommonPlottingCode(in_WidthInPixels, in_HeightInPixels,
in_DataName, 'Frequency', useOffsetIfNeeded, scientificNotation, False,
newLeft, newBottom, newRight, newTop)
# histogram of data
n, bins, patches = ax.hist(in_DataToPlot, numberOfBins,
facecolor=in_FillColor)
# some axis space at the top of the graph
ylim = ax.get_ylim()
if ylim[1] == max(n):
ax.set_ylim(0.0, ylim[1] + 1)
if len(ax.get_xticklabels()) > numberOfMajor_X_TickMarks:
ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(numberOfMajor_X_TickMarks))
fig.savefig(in_FileNameAndPath, format = 'png', dpi=100)
def ScatterPlot(in_DataToPlot, in_FileNameAndPath, in_DataNameX,
in_DataNameY, in_WidthInPixels, in_HeightInPixels,
in_UseOffsetIfNeeded, in_ReverseXY,
in_X_UseScientificNotationIfNeeded, in_Y_UseScientificNotationIfNeeded):
# decode ends of strings ('XYZ_ON', 'XYZ_OFF', 'XYZ_AUTO', etc.) to
boolean values
scientificNotationX =
DetermineScientificNotationFromString(in_DataToPlot[0],
in_X_UseScientificNotationIfNeeded)
scientificNotationY =
DetermineScientificNotationFromString(in_DataToPlot[1],
in_Y_UseScientificNotationIfNeeded)
useOffsetIfNeeded = DetermineOnOrOffFromString(in_UseOffsetIfNeeded)
reverseXY = DetermineOnOrOffFromString(in_ReverseXY)
if reverseXY:
fig, ax = CommonPlottingCode(in_WidthInPixels, in_HeightInPixels,
in_DataNameY, in_DataNameX, useOffsetIfNeeded, scientificNotationX,
scientificNotationY, 0.0, 0.0, 1.0, 1.0)
ax.plot(np.array([min(in_DataToPlot[1]), max(in_DataToPlot[1])]),
np.array([min(in_DataToPlot[0]), max(in_DataToPlot[0])]), 'o') # first
ax.plot() is only with extents
newLeft, newBottom, newRight, newTop, numberOfMajor_X_TickMarks =
YieldNewExtentsAndNumberOfMajor_X_TickMarks(fig, ax, in_WidthInPixels,
in_HeightInPixels, scientificNotationY or useOffsetIfNeeded)
fig, ax = CommonPlottingCode(in_WidthInPixels, in_HeightInPixels,
in_DataNameY, in_DataNameX, useOffsetIfNeeded, scientificNotationX,
scientificNotationY, newLeft, newBottom, newRight, newTop)
if len(ax.get_xticklabels()) > numberOfMajor_X_TickMarks:
ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(numberOfMajor_X_TickMarks))
ax.plot(in_DataToPlot[1], in_DataToPlot[0], 'o') # now that
autoscaling is done, use all data for second ax.plot()
else:
fig, ax = CommonPlottingCode(in_WidthInPixels, in_HeightInPixels,
in_DataNameX, in_DataNameY, useOffsetIfNeeded, scientificNotationY,
scientificNotationX, 0.0, 0.0, 1.0, 1.0)
ax.plot(np.array([min(in_DataToPlot[0]), max(in_DataToPlot[0])]),
np.array([min(in_DataToPlot[1]), max(in_DataToPlot[1])]), 'o') # first
ax.plot() is only with extents
newLeft, newBottom, newRight, newTop, numberOfMajor_X_TickMarks =
YieldNewExtentsAndNumberOfMajor_X_TickMarks(fig, ax, in_WidthInPixels,
in_HeightInPixels, scientificNotationY or useOffsetIfNeeded)
fig, ax = CommonPlottingCode(in_WidthInPixels, in_HeightInPixels,
in_DataNameX, in_DataNameY, useOffsetIfNeeded, scientificNotationY,
scientificNotationX, newLeft, newBottom, newRight, newTop)
if len(ax.get_xticklabels()) > numberOfMajor_X_TickMarks:
ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(numberOfMajor_X_TickMarks))
ax.plot(in_DataToPlot[0], in_DataToPlot[1], 'o') # now that
autoscaling is done, use all data for second ax.plot()
fig.savefig(in_FileNameAndPath, format = 'png', dpi=100)
if __name__ in ('main', '__main__'):
testData1D = 12345678901.5 + np.random.randn(100)
testData2D = [testData1D, 1000.0 * testData1D + 1500 + 200.0 *
np.random.randn(100)]
# note file names
HistogramPlot(testData1D, 'test_histogram_large.png', 'Test Data Name',
'lightgrey',
1024, 768, 'UseOffset_ON', 'ScientificNotation_ON')
HistogramPlot(testData1D, 'test_histogram_small.png', 'Test Data Name',
'lightgrey',
320, 240, 'UseOffset_ON', 'ScientificNotation_ON')
ScatterPlot(testData2D, 'test_scatterplot_small.png', 'Test Data X
Name', 'Test Data Y Name',
320, 240, 'UseOffset_ON', 'ReverseXY_OFF',
'ScientificNotation_X_OFF', 'ScientificNotation_Y_OFF')
ScatterPlot(testData2D, 'test_scatterplot_large.png', 'Test Data X
Name', 'Test Data Y Name',
1024, 768, 'UseOffset_ON', 'ReverseXY_ON',
'ScientificNotation_X_OFF', 'ScientificNotation_Y_ON')
|
|
From: Michael D. <md...@st...> - 2009-03-20 18:50:53
|
Thanks for sharing this -- I'm curious about how you've dealt with some
of these issues and see if any of them can be brought into the core.
Overlapping text has long been something I've wanted to address, but
it's difficult to solve and maintain as much flexibility as we currently
have.
Running your script, I get this traceback:
Traceback (most recent call last):
File "AutoscaledText.py", line 236, in <module>
1024, 768, 'UseOffset_ON', 'ScientificNotation_ON')
File "AutoscaledText.py", line 171, in HistogramPlot
fig, ax = CommonPlottingCode(in_WidthInPixels, in_HeightInPixels,
in_DataName, 'Frequency', useOffsetIfNeeded, scientificNotation, False,
0.0, 0.0, 1.0, 1.0)
File "AutoscaledText.py", line 75, in CommonPlottingCode
x_label._fontproperties._size = x_label._fontproperties._size *
heightRatioForTextSize
TypeError: can't multiply sequence by non-int of type 'float'
> /wonkabar/data1/scraps/AutoscaledText.py(75)CommonPlottingCode()
-> x_label._fontproperties._size = x_label._fontproperties._size *
heightRatioForTextSize
_fontproperties._size can be a CSS size name, such as "medium" or
"large", so this line of code won't work. I replaced this with:
x_label.set_size(x_label.get_size() * heightRatioForTextSize)
y_label.set_size(y_label.get_size() * widthRatioForTextSize)
which also has the advantage of avoiding private APIs that may change in
the future. This seems to work for me, but I don't know if it matches
your results.
Mike
James Phillips wrote:
> All,
>
> Attached, and below, is public domain code for making
> variable-sized plots with autoscaled text that exactly fits the
> available visual plot space, useful for web sites where users choose
> output files with different sizes. Examples are at the bottom of the
> file.
>
> James R. Phillips
> 2548 Vera Cruz Drive
> Birmingham, AL 35235 USA
> email: zu...@zu... <mailto:zu...@zu...>
> http://zunzun.com
>
>
>
> # Entered into the public domain 20 March 2009
> # James R. Phillips
> # 2548 Vera Cruz Drive
> # Birmingham, AL 35235 USA
> # email: zu...@zu... <mailto:zu...@zu...>
> # http://zunzun.com
>
> import numpy as np
> import math, matplotlib
> matplotlib.use('Agg') # must be used prior to the next two statements
> import matplotlib.pyplot as plt
> import matplotlib.mlab as mlab
>
>
> def DetermineOnOrOffFromString(in_String):
> tempString = in_String.split('_')[-1:][0].upper() # allows any
> amount of prefacing text
> if tempString == 'ON':
> return True
> return False
>
>
> def DetermineScientificNotationFromString(inData, in_String):
> tempString = in_String.split('_')[-1:][0].upper() # allows any
> amount of prefacing text
> if tempString == 'ON':
> return True
> elif tempString == 'OFF':
> return False
> else: # must be AUTO
> minVal = np.abs(np.min(inData))
> maxVal = np.abs(np.max(inData))
> deltaVal = np.abs(maxVal - minVal)
>
> scientificNotation = False
> if (maxVal > 100.0) or (minVal < -100.0) or (deltaVal < .05):
> scientificNotation = True
> return scientificNotation
>
>
> def CommonPlottingCode(in_WidthInPixels, in_HeightInPixels, in_XName,
> in_YName, in_UseOffsetIfNeeded, in_X_UseScientificNotationIfNeeded,
> in_Y_UseScientificNotationIfNeeded, in_Left, in_Bottom, in_Right,
> in_Top): # default to lots of room around graph
>
> # a litle more room between x axis and tick mark labels, so not
> text overlap at the bottom left corner - set this before other calls
> matplotlib.rcParams['xtick.major.pad'] = 5+
> (float(in_HeightInPixels) / 100.0) # minimum + some scaled
>
> fig = plt.figure(figsize=(float(in_WidthInPixels ) / 100.0,
> float(in_HeightInPixels ) / 100.0), dpi=100)
> fig.subplotpars.update(in_Left, in_Bottom, in_Right, in_Top)
> ax = fig.add_subplot(111, frameon=True)
>
> # white background, almost no border space
> fig.set_facecolor('w')
>
> xFormatter = fig.gca().xaxis.get_major_formatter()
> xFormatter._useOffset = in_UseOffsetIfNeeded
> xFormatter.set_scientific(in_X_UseScientificNotationIfNeeded)
> fig.gca().xaxis.set_major_formatter(xFormatter)
>
> yFormatter = fig.gca().yaxis.get_major_formatter()
> yFormatter._useOffset = in_UseOffsetIfNeeded
> yFormatter.set_scientific(in_Y_UseScientificNotationIfNeeded)
> fig.gca().yaxis.set_major_formatter(yFormatter)
>
> # Scale text to imagesize. Text sizes originally determined at
> image size of 500 x 400
> widthRatioForTextSize = float(in_WidthInPixels) / 500.0
> heightRatioForTextSize = float(in_HeightInPixels) / 400.0
> for xlabel_i in ax.get_xticklabels():
> xlabel_i.set_fontsize(xlabel_i.get_fontsize() *
> heightRatioForTextSize)
> xOffsetText = fig.gca().xaxis.get_offset_text()
> xOffsetText.set_fontsize(xOffsetText.get_fontsize() *
> heightRatioForTextSize * 0.9)
> for ylabel_i in ax.get_yticklabels():
> ylabel_i.set_fontsize(ylabel_i.get_fontsize() *
> widthRatioForTextSize)
> yOffsetText = fig.gca().yaxis.get_offset_text()
> yOffsetText.set_fontsize(yOffsetText.get_fontsize() *
> heightRatioForTextSize * 0.9)
>
> x_label = ax.set_xlabel(in_XName)
> y_label = ax.set_ylabel(in_YName)
> x_label._fontproperties._size = x_label._fontproperties._size *
> heightRatioForTextSize
> y_label._fontproperties._size = y_label._fontproperties._size *
> widthRatioForTextSize
>
> plt.grid(True) # call this just before returning
>
> return fig, ax
>
>
> def YieldNewExtentsAndNumberOfMajor_X_TickMarks(fig, ax,
> in_WidthInPixels, in_HeightInPixels, in_OffsetUsed):
> # draw everything so items can be measured for size
> canvas = plt.get_current_fig_manager().canvas
> canvas.draw()
>
> # some preliminary info
> xLabelPoints =
> ax.set_xlabel(ax.get_xlabel()).get_window_extent().get_points() # [
> [x,y], [x,y] ]
> yLabelPoints =
> ax.set_ylabel(ax.get_ylabel()).get_window_extent().get_points() # [
> [x,y], [x,y] ], rotated 90 degrees
> xTickZeroPoints =
> ax.get_xticklabels()[0].get_window_extent().get_points()
> yTickZeroPoints =
> ax.get_yticklabels()[0].get_window_extent().get_points()
> xTickIndexPoints =
> ax.get_xticklabels()[len(ax.get_xticklabels())-1].get_window_extent().get_points()
> yTickIndexPoints =
> ax.get_yticklabels()[len(ax.get_yticklabels())-1].get_window_extent().get_points()
> currentPoints = ax.bbox.get_points()
> maxLeft = currentPoints[0][0]
> maxBottom = currentPoints[0][1]
> maxRight = currentPoints[1][0]
> maxTop = currentPoints[1][1]
>
> # find the most left-ward location
> if xTickZeroPoints[0][0] < maxLeft:
> maxLeft = xTickZeroPoints[0][0]
> if yTickZeroPoints[0][0] < maxLeft:
> maxLeft = yTickZeroPoints[0][0]
> if yTickIndexPoints[0][0] < maxLeft:
> maxLeft = yTickIndexPoints[0][0]
> if xLabelPoints[0][0] < maxLeft:
> maxLeft = xLabelPoints[0][0]
> if yLabelPoints[0][0] < maxLeft: # 90 degrees
> maxLeft = yLabelPoints[0][0]
>
> # find the most right-ward location
> if xTickIndexPoints[1][0] > maxRight:
> maxRight = xTickIndexPoints[1][0]
> if xLabelPoints[1][0] > maxRight:
> maxRight = xLabelPoints[1][0]
>
> # find the most bottom-ward location
> if xTickZeroPoints[0][1] < maxBottom:
> maxBottom = xTickZeroPoints[0][1]
> if xLabelPoints[0][1] < maxBottom:
> maxBottom = xLabelPoints[0][1]
> if yLabelPoints[0][1] < maxBottom:
> maxBottom = yLabelPoints[0][1]
>
> # find the most top-ward location
> if yTickIndexPoints[1][1] > maxTop:
> maxTop = yTickIndexPoints[1][1]
> if True == in_OffsetUsed: # could not find a better way to get this
> yp = ax.get_yticklabels()[0].get_window_extent().get_points()
> maxTop += yp[1][1] - yp[0][1]
>
> newLeft = ax.bbox._bbox.get_points()[0][0] - (float(maxLeft) /
> float(in_WidthInPixels)) + 0.01
> newBottom = ax.bbox._bbox.get_points()[0][1] - (float(maxBottom) /
> float(in_HeightInPixels)) + 0.01
> newRight = ax.bbox._bbox.get_points()[1][0] + (1.0 -
> (float(maxRight) / float(in_WidthInPixels))) - 0.01
> newTop = ax.bbox._bbox.get_points()[1][1] + (1.0 - (float(maxTop)
> / float(in_HeightInPixels))) - 0.01
>
> # now redraw and check number of X tick marks
> canvas.draw()
>
> # Calculate major number of X tick marks based on label size
> totalWidth = 0.0
> maxWidth = 0.0
> numberOfMajor_X_TickMarks = len(ax.get_xticklabels())
> for xlabel_i in ax.get_xticklabels():
> w = xlabel_i.get_window_extent().get_points() # the drawn text
> bounding box corners as numpy array of [x,y], [x,y]
> width = w[1][0] - w[0][0]
> totalWidth += width
> if width > maxWidth:
> maxWidth = width
> if totalWidth > (0.95 * ((newRight - newLeft) *
> float(in_WidthInPixels))): # 0.95 for some spacing between tick labels
> numberOfMajor_X_TickMarks = int(math.floor((0.95 * ((newRight
> - newLeft) * float(in_WidthInPixels))) / maxWidth))
>
> return (newLeft, newBottom, newRight, newTop,
> numberOfMajor_X_TickMarks,)
>
>
> def HistogramPlot(in_DataToPlot, in_FileNameAndPath, in_DataName,
> in_FillColor, in_WidthInPixels, in_HeightInPixels,
> in_UseOffsetIfNeeded, in_UseScientificNotationIfNeeded):
>
> # decode ends of strings ('XYZ_ON', 'XYZ_OFF', 'XYZ_AUTO', etc.)
> to boolean values
> scientificNotation =
> DetermineScientificNotationFromString(in_DataToPlot,
> in_UseScientificNotationIfNeeded)
> useOffsetIfNeeded = DetermineOnOrOffFromString(in_UseOffsetIfNeeded)
>
> numberOfBins = len(in_DataToPlot) / 2
> if numberOfBins > 25:
> numberOfBins = 25
> if numberOfBins < 5:
> numberOfBins = 5
>
> # first with 0, 0, 1, 1
> fig, ax = CommonPlottingCode(in_WidthInPixels, in_HeightInPixels,
> in_DataName, 'Frequency', useOffsetIfNeeded, scientificNotation,
> False, 0.0, 0.0, 1.0, 1.0)
>
> # histogram of data
> n, bins, patches = ax.hist(in_DataToPlot, numberOfBins,
> facecolor=in_FillColor)
>
> # some axis space at the top of the graph
> ylim = ax.get_ylim()
> if ylim[1] == max(n):
> ax.set_ylim(0.0, ylim[1] + 1)
>
> newLeft, newBottom, newRight, newTop, numberOfMajor_X_TickMarks =
> YieldNewExtentsAndNumberOfMajor_X_TickMarks(fig, ax, in_WidthInPixels,
> in_HeightInPixels, False)
>
> # now with scaled
> fig, ax = CommonPlottingCode(in_WidthInPixels, in_HeightInPixels,
> in_DataName, 'Frequency', useOffsetIfNeeded, scientificNotation,
> False, newLeft, newBottom, newRight, newTop)
>
> # histogram of data
> n, bins, patches = ax.hist(in_DataToPlot, numberOfBins,
> facecolor=in_FillColor)
>
> # some axis space at the top of the graph
> ylim = ax.get_ylim()
> if ylim[1] == max(n):
> ax.set_ylim(0.0, ylim[1] + 1)
>
> if len(ax.get_xticklabels()) > numberOfMajor_X_TickMarks:
>
> ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(numberOfMajor_X_TickMarks))
>
> fig.savefig(in_FileNameAndPath, format = 'png', dpi=100)
>
>
> def ScatterPlot(in_DataToPlot, in_FileNameAndPath, in_DataNameX,
> in_DataNameY, in_WidthInPixels, in_HeightInPixels,
> in_UseOffsetIfNeeded, in_ReverseXY,
> in_X_UseScientificNotationIfNeeded, in_Y_UseScientificNotationIfNeeded):
>
> # decode ends of strings ('XYZ_ON', 'XYZ_OFF', 'XYZ_AUTO', etc.)
> to boolean values
> scientificNotationX =
> DetermineScientificNotationFromString(in_DataToPlot[0],
> in_X_UseScientificNotationIfNeeded)
> scientificNotationY =
> DetermineScientificNotationFromString(in_DataToPlot[1],
> in_Y_UseScientificNotationIfNeeded)
> useOffsetIfNeeded = DetermineOnOrOffFromString(in_UseOffsetIfNeeded)
> reverseXY = DetermineOnOrOffFromString(in_ReverseXY)
>
> if reverseXY:
> fig, ax = CommonPlottingCode(in_WidthInPixels,
> in_HeightInPixels, in_DataNameY, in_DataNameX, useOffsetIfNeeded,
> scientificNotationX, scientificNotationY, 0.0, 0.0, 1.0, 1.0)
> ax.plot(np.array([min(in_DataToPlot[1]),
> max(in_DataToPlot[1])]), np.array([min(in_DataToPlot[0]),
> max(in_DataToPlot[0])]), 'o') # first ax.plot() is only with extents
> newLeft, newBottom, newRight, newTop,
> numberOfMajor_X_TickMarks =
> YieldNewExtentsAndNumberOfMajor_X_TickMarks(fig, ax, in_WidthInPixels,
> in_HeightInPixels, scientificNotationY or useOffsetIfNeeded)
> fig, ax = CommonPlottingCode(in_WidthInPixels,
> in_HeightInPixels, in_DataNameY, in_DataNameX, useOffsetIfNeeded,
> scientificNotationX, scientificNotationY, newLeft, newBottom,
> newRight, newTop)
> if len(ax.get_xticklabels()) > numberOfMajor_X_TickMarks:
>
> ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(numberOfMajor_X_TickMarks))
> ax.plot(in_DataToPlot[1], in_DataToPlot[0], 'o') # now that
> autoscaling is done, use all data for second ax.plot()
> else:
> fig, ax = CommonPlottingCode(in_WidthInPixels,
> in_HeightInPixels, in_DataNameX, in_DataNameY, useOffsetIfNeeded,
> scientificNotationY, scientificNotationX, 0.0, 0.0, 1.0, 1.0)
> ax.plot(np.array([min(in_DataToPlot[0]),
> max(in_DataToPlot[0])]), np.array([min(in_DataToPlot[1]),
> max(in_DataToPlot[1])]), 'o') # first ax.plot() is only with extents
> newLeft, newBottom, newRight, newTop,
> numberOfMajor_X_TickMarks =
> YieldNewExtentsAndNumberOfMajor_X_TickMarks(fig, ax, in_WidthInPixels,
> in_HeightInPixels, scientificNotationY or useOffsetIfNeeded)
> fig, ax = CommonPlottingCode(in_WidthInPixels,
> in_HeightInPixels, in_DataNameX, in_DataNameY, useOffsetIfNeeded,
> scientificNotationY, scientificNotationX, newLeft, newBottom,
> newRight, newTop)
> if len(ax.get_xticklabels()) > numberOfMajor_X_TickMarks:
>
> ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(numberOfMajor_X_TickMarks))
> ax.plot(in_DataToPlot[0], in_DataToPlot[1], 'o') # now that
> autoscaling is done, use all data for second ax.plot()
>
> fig.savefig(in_FileNameAndPath, format = 'png', dpi=100)
>
>
> if __name__ in ('main', '__main__'):
>
> testData1D = 12345678901.5 + np.random.randn(100)
> testData2D = [testData1D, 1000.0 * testData1D + 1500 + 200.0 *
> np.random.randn(100)]
>
> # note file names
> HistogramPlot(testData1D, 'test_histogram_large.png', 'Test Data
> Name', 'lightgrey',
> 1024, 768, 'UseOffset_ON', 'ScientificNotation_ON')
>
> HistogramPlot(testData1D, 'test_histogram_small.png', 'Test Data
> Name', 'lightgrey',
> 320, 240, 'UseOffset_ON', 'ScientificNotation_ON')
>
> ScatterPlot(testData2D, 'test_scatterplot_small.png', 'Test Data X
> Name', 'Test Data Y Name',
> 320, 240, 'UseOffset_ON', 'ReverseXY_OFF',
> 'ScientificNotation_X_OFF', 'ScientificNotation_Y_OFF')
>
> ScatterPlot(testData2D, 'test_scatterplot_large.png', 'Test Data X
> Name', 'Test Data Y Name',
> 1024, 768, 'UseOffset_ON', 'ReverseXY_ON',
> 'ScientificNotation_X_OFF', 'ScientificNotation_Y_ON')
>
> ------------------------------------------------------------------------
>
> ------------------------------------------------------------------------------
> Apps built with the Adobe(R) Flex(R) framework and Flex Builder(TM) are
> powering Web 2.0 with engaging, cross-platform capabilities. Quickly and
> easily build your RIAs with Flex Builder, the Eclipse(TM)based development
> software that enables intelligent coding and step-through debugging.
> Download the free 60 day trial. http://p.sf.net/sfu/www-adobe-com
> ------------------------------------------------------------------------
>
> _______________________________________________
> Matplotlib-users mailing list
> Mat...@li...
> https://lists.sourceforge.net/lists/listinfo/matplotlib-users
--
Michael Droettboom
Science Software Branch
Operations and Engineering Division
Space Telescope Science Institute
Operated by AURA for NASA
|