Content-Type: multipart/related; boundary="------------030203010804020302060705" --------------030203010804020302060705 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Those Computer Modern fonts (specifically the Bakoma distribution of them that matplotlib includes) use a custom character set mapping where many of the characters are in completely arbitrary locations.  For regular text, matplotlib expects a regular Unicode font (particularly to get the minus sign).  Since cmr10 doesn't have a standard encoding, it just won't work. 

You could get around this by overriding the default formatter to use a different symbol for the minus sign.  See this example for an example of overriding the formatter:

http://matplotlib.sourceforge.net/examples/pylab_examples/major_minor_demo1.html#pylab-examples-major-minor-demo1

Mike

On 04/29/2010 03:33 PM, Tony S Yu wrote:
There was a recent thread about the font sizes not matching up between regular text and math text. I decided I'd try to get matching font sizes by using computer modern as the default font, so I added the following to my matplotlibrc file:

font.family: serif
font.serif: cmr10

This fixes the font size issue, but for some reason, MPL's minus sign seems to be using a character not defined by the computer modern fonts (see y-axis in attached image).

Is there a fix for this missing character?

Best,
-Tony

P.S. I'm using the cmr10 fonts provided by MPL (confirmed by using the findfont function).

------------------------------------------------------------------------------
_______________________________________________ Matplotlib-users mailing list Matplotlib-users@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/matplotlib-users

--------------030203010804020302060705 Content-Type: image/png Content-Transfer-Encoding: base64 Content-ID: iVBORw0KGgoAAAANSUhEUgAAAW4AAADBCAYAAADvn1oAAAAABHNCSVQICAgIfAhkiAAAAAlw SFlzAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xt8TWe+x/FPGom4REJNEabFVNSlNQ2Kdgwt hmq10w51QqqGaouOy5S6jNGZU1FVNFp0OOrWaFxOtWirqFtdWqURl7rvUFVFkKSN3CR7nT+e YxMSsmPv7L2T7/v16mtmP3ttfk/C18qz1vNbfpZlWYiIiM+4zdMFiIiIcxTcIiI+RsEtIuJj FNwiIj5GwS0i4mMU3CIiPkbBLSLiYxTcIiI+RsEtIuJjFNwiIj5GwS0i4mMU3CIiPqaMO35R y7JYv349r7/+Ohs3brzhsVlZWQwdOpTKlSsDkJyczNSpUwkICHBHaSIiPs/P1d0Bly5dyuef f05aWho7d+7k2LFjNzx+8ODB5ObmMm3aNAAGDhxIQEAAMTExrixLRKTEcHlwXzZ//nz+9a9/ 3TC4U1NTqV69OuvXr6dVq1YAbNu2jfbt25OUlESFChXcUZqIiE9z2xp3Yf492L59O1lZWTRu 3Ngx1qhRIzIzM9m2bZu7ShMR8WkevThps9nw9/cnODjYMRYSEoK/vz82m82DlYmIeC+3XJws rOTkZMqWLXvdeGBgIMnJyfl+5ty5c6xevZratWtTrlw5d5coIqVcRkYGx48fp2PHjlStWtXT 5QAeDm673Y6fn1+hxwFWr15NVFSUu0sTEckjNjaWnj17eroMwMPBffkWwKvl5uaSnZ1NSEhI vp+pU6cOYL6IDRo0cGt9njRkyJASf2eN5lgylJQ57t8P778PGzdC9erw3HPwxBNw7NgBoqKi HNnjDTwa3OHh4aSnp5OTk0OZMqaUpKQkLMuibt26+X4mKCgIgAYNGhAREVFstRa30NDQEj0/ 0BxLCl+f4+bNEB0Nq1dDvXowZw707AmBgeb9/48cR/Z4A49enGzZsiWBgYHs2bPHMbZr1y4C AgJo0aKFBysTkZLMskxQ//GP5r9Tp2DRIjhwAP761yuh7a3cejvgtbcEJiQkEBYWxqpVqwAI Dg4mKiqK+fPnO46JjY2lX79+hIaGuqs0ESml7Hb45BN44AHo1AmysmD5ckhIgO7dwd/f0xUW jsuXSlavXs3s2bPZvHkzSUlJtGnThvr16zNr1izsdjtZWVl5Aj0mJobBgwczduxY0tPTKV++ PJMnT3Z1WSJSiuXkwJIlMH48fP89tGkDa9ZA+/ZQwH0QXs3lwd2xY0c6duyY73sRERGcP38+ z1iFChWYPXu2q8vweZGRkZ4uwe00x5LBm+eYnQ0ffABvvAE2Gzz6KMycCQ895OnKbo1HL05K wbz5L4OraI4lgzfOMSMDZs+Gt96CH3+Ep5+GxYuhaVNPV+YaCm4RKTF+/RXeew8mT4bz5yEy EkaNgoYNPV2Zaym4RcTnXbgA77xj/ktLM3eGjBgBBdxV7PMU3CLis06fhilTzFl2bi688AIM Gwa1anm6MvdScIuIzzlxwqxfz54NAQHw8sswdCjccYenKyseCm4R8RlHjsCECbBgAVSqBKNH m9DOp3tGiabgFhGvt2+fuQd78WJzVj1hArz4IlSs6OnKPEPBLSJea8cO00dk+XK48054913o 0+dK/5DSSk95FxGv89VX0LGj2Zp+4ADMnQtHj8KAAQptUHCLiJewLPjiC2jd2mxJP33aNH7a vx969zYXIcVQcIuIR9nt8PHH0Ly52ZJ+6RKsWOF7jZ+Kk4JbRDwiJwc+/BDuu89sSQ8OhrVr 4euvoUsX32z+VFwU3CJSrLKzzf3X99xjHlhw112wdSts2OC73fqKm+4qEZFikZ5+pfHTTz+Z s+wlS8CHH57jMQpuEXGrX34xW9KnTDGNn3r0MI2fSvAjY91OwS0ibnH+/JXGT+nppvHTq6+W 3MZPxUnBLSIudfq0aav63nvmjpEXXzSNn2rW9HRlJYeCW0Rc4sQJmDjRrGOXLQuDBsGQIaWn 8VNxUnCLyC25uvFTSAiMGWMaP+l53+6j4BaRItm71zR+WrLEnFW/+abph11aGz8VJwW3iDjl 229N46cVK8w92NOmmQuP6iFSfFwe3JZlMWbMGDIzMwkJCeHo0aNMmzaNSpUq5Xt8dHQ0q1at 4r777iMgIACbzUanTp14+eWXXV2aiBSRZZnGT9HRZndj/fowb565tU89RIqfy4M7JiaGhIQE PvvsMwDeeustevXqxSeffJLv8Tk5OSQmJrJz507Cw8P5+9//Tu/evV1dlogUweXGT9HRZnfj ffeZnth/+Yt6iHiSS7e8W5bFxIkTiYqKcoz16NGDFStWcOTIkQI/980335CZmcmePXsU2iJe wG6HZcugWTPo3Nn0FVm50jR+euYZhbanuTS4jxw5wpkzZ2jcuLFjrGbNmoSGhrJhw4YCP2dZ livLEJEiysmBhQvh3nvNWXVICHz5pWn89Pjj6iPiLVy6VGKz2QC4/fbb84xXqVKFxMTEAj/3 6aefcuHCBdLS0jh37hzTp08nSFc6RIpNVpa5nW/CBEhMhMceM/djt2rl6cokPy49405OTgag bNmyecbLli3reC8/FSpU4J///CdvvvkmwcHB9OvXz5VliUgB0tNh6lT43e/MDseICIiPh08/ VWh7M5eecdvtdgD8rvl5ym63Xzd2Wd++falVq5bjdceOHXnsscd444038oxfa8iQIYRec4d/ ZGQkkZGRRS1fpNT45ReYMcM0frpwwbRXHTlSjZ/i4uKIi4vLM5aSkuKhagrm0uCuXLlyvuPp 6emEhITk+9614VyuXDkAduzYccPgjomJIUL9IEWccv68OcN+911ztt2nj2n8VKeOpyvzDvmd /MXHx9O0aVMPVZQ/ly6VhIeHA3n/hbLb7Zw7d466+bQES0xMpHLlyixdutQxlpaW5sqSRATT +Gn4cLNhZvJks2EmMdE0glJo+x6XnnHXq1ePsLAwEhISHEF96NAhMjIyaN269XXHZ2dnU7Vq 1Txn1jabjTJlyvDQQw+5sjSRUumHH0zjp/ffN42fBg82jZ9+8xtPVya3wuWPLuvfvz/z5893 vI6NjaVz5840bNiQhIQEwsLCWLVqFQD33HMPkZGRjh9DLMtiyZIljB49mjvUUkykyA4fNssg d99tNsz8858mxKOjFdolgct3To4YMYKRI0cyfPhwgoKCsNlsLFiwADDLJllZWXnu2x44cCCj Ro3Csix++uknunXrxpAhQ1xdlkipsGePafy0dClUq2bOtl94ASpU8HRl4kouD+4yZcowadKk fN+LiIjg/PnzecaqVavG5MmTXV2GSKmyfbs5m165EmrXhunToXdvNX4qqfSUdxEfZVmwcSN0 6AAtW5q+2PPnm2WSl15SaJdkCm4RH2NZsGoV/OEP8PDDkJRkemLv2we9eqlbX2mg4BbxEXY7 fPTRlcZPdrvZ4bhrF3TrpsZPpYmCW8TL5eRAbCw0bgxdu5pHgq1bB9u2mZ4iavxU+ii4RbxU VhbMmmUeWvDss6afyNdfm9B+5BEFdmmmR5eJeJn0dBPYkybBqVPmLPujj+D3v/d0ZeItFNwi XiI11TR+evtt0/gpKso0frrnHk9XJt5GwS3iYZcbP73zDmRkqPGT3JyCW8RDfv7ZNHz6z3/M LX4vvQSvvAJhYZ6uTLydglukmB0/braiz5ljGj8NGWL+q1rV05WJr1BwixSTQ4fMo8FiY80t fWPHwsCB5rmOIs5QcIu42e7dVxo/1aihxk9y6xTcIm5ydeOnOnXMQwt69zbLIyK3QhtwRFzI smDDBmjf/krjpwULTOOnF19UaItrKLhFXMCy4PPPTeOnRx4xt/gtXQrff292PZbRz7biQgpu kVtgt8P//i80bWr6hlgWfPYZxMebHY+36W+YuIH+WIkUQU4OfPCBafzUrRtUqQLr18PWraZz n/qIiDspuEWckJUFM2dCeLjpfX333abx05dfmt7YCmwpDlp5EymEixevNH76+Wdzlv3xx9Ck iacrk9JIwS1yA6mp5vmNb78NKSlXGj/Vr+/pyqQ0U3CL5OPcOdP46d13ITPzSuOn2rU9XZmI G4LbsizGjBlDZmYmISEhHD16lGnTplGpUqV8j8/KymLo0KFUrlwZgOTkZKZOnUqAHpwnHnDq 1JXGTwD9+5vGTzVqeLYukau5/OJkTEwMCQkJTJ48mbFjx3LvvffSq1evAo9/9dVXue2224iO jiY6Oho/Pz+GDx/u6rJEbuj4cRPSderA++/D3/8OP/xg1rQV2uJtXBrclmUxceJEoqKiHGM9 evRgxYoVHDly5LrjU1NTmTVrFj179nSM9ezZk1mzZnHx4kVXliaSr0OHzDb0u+8292P/618m sF9/Xd36xHu5NLiPHDnCmTNnaNy4sWOsZs2ahIaGsmHDhuuO3759O1lZWXmOb9SoEZmZmWzb ts2VpYnkkZAAzzwDDRrA2rXmzPr4cRg1St36xPu5NLhtNhsAt99+e57xKlWqkJiYmO/x/v7+ BAcHO8ZCQkLw9/d3/FoirvTNN9ClC9x/P+zcadayExNNP2x16xNf4dLgTk5OBqDsNZ10ypYt 63jv2uOvPRYgMDAw3+NFiuJy46d27aBVK7DZzK7Hw4dNe1U1fhJf49K7Sux2OwB+12wfs9vt 140VZfxqQ4YMITQ0NM9YZGQkkZGRzpYtJdTlxk/R0WZ34/33m3Xsp55SDxHJX1xcHHFxcXnG UlJSPFRNwVwa3Jdv6btWeno6IfksHOZ3fG5uLtnZ2fkef7WYmBgiIiKKVqiUaLm5sGyZeXhB QgI8+KBp/PToo9qSLjeW38lffHw8TZs29VBF+XPpeUd4eDiQ918ou93OuXPnqFu3br7Hp6en k5OT4xhLSkrCsqx8jxe5kUuXTO/rxo3NhceqVc0SyZYtavwkJYtLg7tevXqEhYWRkJDgGDt0 6BAZGRm0bt36uuNbtmxJYGAge/bscYzt2rWLgIAAWrRo4crSpATLzDQXGcPD4bnnzP9+8425 W6RtWwW2lDwuX+nr378/8+fPd7yOjY2lc+fONGzYkISEBMLCwli1ahUAwcHBREVFXXd8v379 rlu/FrnWxYswZQrUrQsDBkCLFub5jsuXm/8vUlK5fMv7iBEjGDlyJMOHDycoKAibzcaCBQsA s2ySlZWFZVmO42NiYhg8eDBjx44lPT2d8uXLM3nyZFeXJSVIaipMmwYxMabx07PPmsZP/79S J1LiuTy4y5Qpw6RJk/J9LyIigvPnz+cZq1ChArNnz3Z1GVICnTtnwnraNLM80revafx0112e rkykeKk7oHi9U6fMzsaZM816df/+ppeIeohIaaXgFq917Bi8+SbMnQvly5sufYMHwzUbc0VK HQW3eJ2DB+GNN2DhQvMsx3//21x8LKAzsEipo+AWr5GQYHY5fvQRhIWZvtj9+pmzbRG5Qht/ xeO+/hoef9xsSY+PN2vZNptZFlFoi1xPwS0eYVmwfj088ojZkp6YCLGxpj92v35q/CRyIwpu KVaWBZ9+asK6XTtzT/ZHH8G+fdCzJ5TR4p3ITSm4pVjk5sKSJWY5pEsX8Pc3nft27oSnn1a3 PhFn6K+LuNWlSzB/PjRqBN27wx13wMaNsHmzuvWJFJWCW9wiMxPee89sQ+/dG+rXh+3bYc0a aNNGgS1yK7SiKC518aK5K2TSJDhzxrRXXbEC7r3X05WJlBwKbnGJlJQrjZ9SU6FXL9P4qV49 T1cmUvIouOWWJCVdafyUlQXPPw/Dh6vxk4g7KbilSH76ySyHzJpl1qsHDDCNn6pX93RlIiWf gluccm3jp2HDYNAgNX4SKU4KbimUAwdM46cPPzQh/d//bdqrqvGTSPFTcMsN7dplnpb+0UdQ s6Z5VNjzz6uHiIgn6T5uyde2bfDYYxARYcJ71izT+GnQIIW2iKcpuMXBsmDdOtP46aGH4Phx 0/jp4EFzlh0Y6OkKRQQU3IIJ7JUroVUraN8efvkFli2DvXvV+EnEGym4S7HcXFi8GH7/e3ji CQgIgFWrYMcOeOopNX4S8Vb6q1kKXboE8+ZBw4bwX/9l7r3etMk0furUSX1ERLydS38I3r17 N2+88Qb3338/+/fvp0uXLnTt2vWGn6lRowYPP/ww1atXJyUlhRMnTrBkyRKqVKniytIE0/hp 7lxzH/YPP8CTT5o17ObNPV2ZiDjjpsE9btw4UlNTC3y/W7duPPDAA6SlpdG5c2eWL19Os2bN yMjIoG7dutSpU4emTZsW+PnMzEw+/fRTAgICePTRR1mwYIFC28XS0kzjp8mTTeOn7t3NmrYa P4n4ppsGd6tWrWjXrl2B769btw6ADz74gIoVK9KsWTMAypUrR5cuXXj77beJjY0t8PN//vOf mTt3rrN1SyGkpMC778LUqabx03PPwYgRavwk4utctsa9efNmGjdunGesUaNGrF+/3lW/hRRS UhKMHm0aPY0fD5GR5h7s2bMV2iIlgcvWuG02G02aNMkzVqVKFU6fPk1GRgblypXL93Opqan8 +9//JiAggF27dtGvXz/+9Kc/uaqsUuXkySuNn/z9zZZ0NX4SKXlcFtzJycmUvebR3Jdfp6Sk FBjcBw8eZOHChZQrV44zZ84QHh7O119/TcOGDW/4+w0ZMoTQ0NA8Y5GRkURGRt7CLHxTYuKV xk8VK8Krr5odjrpUIOKcuLg44uLi8oylpKR4qJqCuSy4LcvC75r7yOx2O8B141dbs2aNI9Sr VatGgwYNmDJlCrNnz77h7xcTE0NERMQtVu3b9u83jZ/i4kzjp3HjzFl2cLCnKxPxTfmd/MXH x9/wBgtPcFlwV65c+bqx9PR0ACrdoIVcrVq18rwOCgri22+/dVVZJdKuXRAdbXY31qwJb79t tqQX8EONiJQwLrs4GR4eTnJycp6xs2fPUq1aNcoX0JVowIAB162Lp6Wl3fAMvTTbuhU6dzaN nxIS4H/+x1x0/NvfFNoipYnLgrtt27bs3r07z9iuXbto3bp1gZ9JT0+n+VW7P+x2O8eOHaNN mzauKsvnWRZ8+SU8/DD84Q9w4gQsXGgaP/Xtq8ZPIqWRy4K7a9eu/Pzzz8THxwPmYuXq1at5 5ZVXHMf07t2btm3bOl5HRUXRvXt3x+s1a9YQGBjImDFjXFWWz7Is83T0li2hQweziebjj2HP HujRQ42fREqzm/71X7x4MV988UWB77ds2RKA0NBQVq5cyYQJE2jevDk7duxgxowZtGjRwnFs dnY2ly5dcrxu3749sbGxvPLKK2RmZpKUlMTWrVu54447bmVOPi03F5YuNfdf790LrVvDF1/A n/6kHiIiYvhZlmV5ughnXL7C+91335Wou0ouXTJ9QyZMgMOHoWNH+Mc/THCLiOd4Y+aoO6CH ZWbCjBlw993Qp4/p2LdjhznLVmiLSH60UuohaWnwn/+Yxk9nz5r2qqNGwTVdA0RErqPgLmbJ yVcaP/36K/TqBSNHmjNuEZHCUHAXk7NnzUaZ6dPNena/fjB8OPz2t56uTER8jYLbzU6ehLfe Mptl/P1hwADT+KlaNU9XJiK+SsHtJjabafw0b55p/DRihNnhqMZPInKrFNwutn+/uQc7Lg5+ 8xvTU+Sll9T4SURcR8HtIvHxVxo//fa35uJj377qISIirqf7uG/Rli3w6KPQtKnZjv7++3D0 KLz8skJbRNxDwV0ElgVr10LbtmaTzMmT8OGHcOCA2USjxk8i4k4KbifY7bB8ObRoYXqHpKfD J5/A7t3muY5q/CQixUHBXQi5ubBoETRpAn/+s1kCWb0atm+HJ5+E2/RVFJFipMi5gexsmDMH GjQwZ9S1asHmzbBpk7r1iYjn6If7fGRkmMCeONE8uOCpp8ztfV722DkRKaUU3Ff59dcrjZ+S ksxZ9qhR0KiRpysTEblCwc2Vxk8xMaZr33PPmZ2OavwkIt6oVAf3mTOm8dOMGabx0wsvwLBh avwkIt6tVAb3jz9eafwUEGAaPw0dqsZPIuIbSlVw22zm0WDz55veIaNGmcZPlSt7ujIRkcIr FcH9/fem8dOiRabx0/jx8OKLavwkIr6pRAf3d9+Zxk8ffwx33gnvvGO2pKuHiIj4MpdvwLlw 4QIDBw7kgw8+KNTxGzZsoEePHkycOJHIyEg2bdp0yzVs3gydOkGzZrBvn2n8dOQIDBzoO6Ed Fxfn6RLcTnMsGUrDHL3NTc+4x40bR2pqaoHvd+vWjQceeIDs7Gz69+9PcHAwS5YsoUWLFjf9 zU+cOEHXrl3Zt28fNWrU4NSpUzRq1Ih9+/ZRs2ZNpyZyufFTdDR89RXce6/ZNNOtm3nyjK+J i4sjMjLS02W4leZYMpSGOXqbmwZ3q1ataNeuXYHvr1u3DoDAwEDef/99AJYvX16o33z69Ok0 a9aMGjVqABAWFkbz5s157733GDduXKF+DbsdVqwwgb1zJzRvbhpBPf64eoiISMnk0WjbvHkz jRs3zjPWuHFj1q9ff9PP5uaaM+omTcyW9AoVYM0a0/jpiScU2iJScnk03hITE7n99tvzjFWu XBmbzXbTzz79NPToYTbLbNkCGzdChw5q/CQiJZ9H7ypJTk6mbNmyecbKli1LcnJygZ/JzMwE oHr1A0yYYDr3gXl0WEmSkpJCfEmb1DU0x5KhpM/xwIEDAGRkZHi4kis8Gtx2ux2/a06R8xu7 2rFjxwDYuTOKqCi3ludxTUtBO0LNsWQoDXM8fvw4Dz30kKfLADwc3JXz2bKYnp5OSEhIgZ/p 2LEjsbGx1K5dm3K+cm+fiPiszMxMjh07RseOHT1dioNHgzs8PPy6ZZGzZ8/yu9/9rsDPVK1a lZ49e7q7NBERhwcffNDTJeTh0YuTbdu2Zffu3XnGdu3aRevWrT1UkYiI93NLcNvtdux2+3Xj vXv3pm3bto7Xffr04auvvuLUqVMAHD58mP379zNw4EB3lCUiUiLcdKlk8eLFfPHFFwW+f/UO yRdeeIGDBw/y448/MnLkSD777DOef/55x9pQdnY2ly5dchxft25dFi5cyLBhw7j//vvZtm0b y5YtY9asWWRmZhISEsLRo0eZNm0alSpVyvf3z8rKYujQoY718uTkZKZOnUpAQEDhvgIeYFkW Y8aMKfQcz549y/jx4/nll184ePAgzZs3Jzo6mooVKxZz5YXj7Pyu1aFDB+bOnUutWrXcXGnR FWWOZ8+eZfTo0VSqVIng4GDq1q3Lc889V4xVO6coc5w+fTpnzpwhJyeHlJQU/vGPfzi9C7q4 WZbF+vXref3119m4ceMNj/WavLG8zJQpU6zOnTs7Xk+cONF68sknCzx+0KBB1sCBAx2vBwwY YA0ePNitNd4qZ+fYp08f69dff7Usy7IyMjKs++67z2rXrp3b6ywqZ+d3tXnz5ll+fn7WDz/8 4K7yXMLZOaalpVnNmjWztmzZYlmWZS1atMgKDAy0UlNT3V5rUTk7x6lTp1r79+93vD516pRX /zm1LMtasmSJ1bt3b6tr165W7dq1b3q8t+SNVwW33W63qlevbn344YeOsZMnT1p+fn7W4cOH rzs+JSXFCgoKsrZt2+YY27p1q1WuXDkrLS2tWGp2lrNz3Lt3r1W+fHlrzpw5jrFZs2ZZfn5+ 1o4dO4qlZmc4O7+rnT171howYIDXB3dR5jhmzBirb9++jtc7duyw/vrXv1qXLl1ye71FUZQ5 tm/f/rqxZ555xjp79qzb6nSVefPm3TS4vSlvvGpj+JEjRzhz5kyebfA1a9YkNDSUDRs2XHf8 9u3bycrKynN8o0aNyMzMZNu2bcVSs7OcnWNwcDDly5fPc/N/7dq1AbPz1Ns4O7+rTZs2jb/9 7W/uLvGWOTvHS5cuMWPGDDp16uQYa9asGXPmzKFMGe/srFyU72NqaiqjRo1yXN+yLIvz589f tzvaG1mWddNjvClvvOpPzeWt7td+o6tUqZJvSNlsNvz9/Qm+6okIISEh+Pv7Y7PZ6NChg3sL LgJn53jXXXeRlJSUZ+zyxdw6deq4qcqic3Z+l61evZo2bdoQFBTk1vpcwdk5xsfHk5ycjN1u 58033yQzMxObzca4ceO48847i6VmZxXl+/jiiy/Sr18/1q9fz8yZM1m8eDEjR47kthLSOMib 8sarvqKX7+ku7Db4/LbMg+lUeKNt857k7BzzExcXR4sWLWjevLnL67tVRZnfxYsX+eabb3jk kUfcXp8rODvHy0H3+eefM2LECF577TWeeOIJOnToQFZWlvsLLoKifB/79u3LhAkT2LFjBxER EaSkpNyws6iv8aa88argvvwjVmG3wTs77g2cneO11q5dS3x8PAsXLnRLfbeqKPObNm0agwYN cnttrlKUP6cAf/zjHx1jbdu25ciRIyxdutSNlRZdUb6P33//Pfv372fTpk20bNmSmTNn8uyz z7q91uLiTXnjVcGd3xZ4KHgbfH7H5+bmkp2dfcNt857k7Byv9vPPPzNs2DDWrVtH3bp13VHe LXN2ft999x21a9e+7nOFWXP0lKL+Ob18beLqsW+//db1BbqAs3NMS0ujb9++TJ8+ndatW7Nl yxbGjx/PokWLXPJUK2/gTXnjVWvc4eHhgOk2VqVKFcD8a3bu3Ll8gyo8PJz09HRycnIcF3mS kpKwLMtrg83ZOV6WlZXFSy+9xKJFi2jQoAEZGRmkpqZSvXr1Yqm7sJyd36pVq7DZbI69Ahcu XABg2LBhREREMGrUqGKqvPCcnWOD/29hmd8/Rv5e+ngmZ+e4du1aHnzwQSpUqADAbbfdxsiR Izl16hTbt2+nTZs2xVe8m3hT3nhVcNerV4+wsDASEhIcX4hDhw6RkZGR7zb4li1bEhgYyJ49 e4iIiADMlvmAgIBCPTrNE5yd42UjRozg9ddfd4TAt99+i91u97rgdnZ+Y8aMyfN606ZNrFy5 ksmTJ3vthTtn51inTh3q1avH8ePHHWPnzp0DzBOmvJGzcyxTpky+bU8bNGhAaGio2+stDt6U N161VALQv3/as28UAAAB3UlEQVR/5s+f73gdGxtL586dadiwIQkJCYSFhbFq1SrA3CoXFRV1 3fH9+vXz6j8szswRYOLEiZw8eZLPP/+cCRMmMGHCBCZNmkT9+vU9Uf5NOTu/q+Xk5ADmR1Bv 5uwcR40axeLFix2vly9fTpMmTfjLX/5SrHU7w5k5dujQgZ07d7J3717H8ampqWzevJmnn366 2Gt3lmX2tOQZ8+a88aozbjBnliNHjmT48OEEBQVhs9lYsGABYH5Uy8rKyvMFjomJYfDgwYwd O5b09HTKly/P5MmTPVV+oTgzx3379jF69Ggsy2LZsmWOX6NChQqEhYV5pP6bcfZ7eNkrr7zC ihUr8PPz46mnnqJ79+5euVQCzs+xd+/enD59mmeffZaKFSuSlpbG2rVrvXapBJybY1BQECtW rOC1117D39+fcuXKYbfbmTJlSr53YniL1atXM3v2bDZv3kxSUhJt2rShfv36zJo1y6vzxs/y 5qtAIiJyHa9bKhERkRtTcIuI+BgFt4iIj1Fwi4j4GAW3iIiPUXCLiPgYBbeIiI9RcIuI+BgF t4iIj1Fwi4j4GAW3iIiPUXCLiPgYBbeIiI9RcIuI+BgFt4iIj1Fwi4j4GAW3iIiPUXCLiPgY BbeIiI/5P2aqJ7DC+C5iAAAAAElFTkSuQmCC --------------030203010804020302060705--