Screenshot instructions:
Windows
Mac
Red Hat Linux
Ubuntu
Click URL instructions:
Rightclick on ad, choose "Copy Link", then paste here →
(This may not be possible with some types of ads)
You can subscribe to this list here.
2000 
_{Jan}

_{Feb}

_{Mar}

_{Apr}
(9) 
_{May}
(2) 
_{Jun}
(2) 
_{Jul}
(3) 
_{Aug}
(2) 
_{Sep}

_{Oct}

_{Nov}

_{Dec}


2001 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}
(2) 
_{Jun}

_{Jul}
(8) 
_{Aug}

_{Sep}

_{Oct}
(5) 
_{Nov}

_{Dec}

2002 
_{Jan}
(2) 
_{Feb}
(7) 
_{Mar}
(14) 
_{Apr}

_{May}

_{Jun}
(16) 
_{Jul}
(7) 
_{Aug}
(5) 
_{Sep}
(28) 
_{Oct}
(9) 
_{Nov}
(26) 
_{Dec}
(3) 
2003 
_{Jan}

_{Feb}
(6) 
_{Mar}
(4) 
_{Apr}
(16) 
_{May}

_{Jun}
(8) 
_{Jul}
(1) 
_{Aug}
(2) 
_{Sep}
(2) 
_{Oct}
(33) 
_{Nov}
(13) 
_{Dec}

2004 
_{Jan}
(2) 
_{Feb}
(16) 
_{Mar}

_{Apr}
(2) 
_{May}
(35) 
_{Jun}
(8) 
_{Jul}

_{Aug}
(2) 
_{Sep}

_{Oct}

_{Nov}
(8) 
_{Dec}
(21) 
2005 
_{Jan}
(7) 
_{Feb}

_{Mar}

_{Apr}
(1) 
_{May}
(8) 
_{Jun}
(4) 
_{Jul}
(5) 
_{Aug}
(18) 
_{Sep}
(2) 
_{Oct}

_{Nov}
(3) 
_{Dec}
(31) 
2006 
_{Jan}

_{Feb}

_{Mar}

_{Apr}
(3) 
_{May}
(1) 
_{Jun}
(7) 
_{Jul}

_{Aug}
(2) 
_{Sep}
(3) 
_{Oct}

_{Nov}
(1) 
_{Dec}

2007 
_{Jan}

_{Feb}

_{Mar}
(2) 
_{Apr}
(11) 
_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}
(2) 
2008 
_{Jan}

_{Feb}

_{Mar}

_{Apr}
(4) 
_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}
(10) 
2009 
_{Jan}

_{Feb}

_{Mar}

_{Apr}
(1) 
_{May}
(1) 
_{Jun}

_{Jul}
(2) 
_{Aug}
(1) 
_{Sep}

_{Oct}
(1) 
_{Nov}

_{Dec}
(1) 
2011 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}
(5) 
_{Jun}
(1) 
_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

2012 
_{Jan}
(1) 
_{Feb}
(1) 
_{Mar}

_{Apr}
(1) 
_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

2013 
_{Jan}

_{Feb}

_{Mar}
(1) 
_{Apr}

_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}
(1) 
_{Dec}
(1) 
2014 
_{Jan}

_{Feb}
(1) 
_{Mar}
(1) 
_{Apr}

_{May}
(2) 
_{Jun}
(1) 
_{Jul}
(1) 
_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

2018 
_{Jan}

_{Feb}

_{Mar}
(6) 
_{Apr}

_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 

1

2

3

4

5

6

7

8

9

10

11

12
(12) 
13

14

15

16

17

18

19

20
(1) 
21

22

23

24

25
(5) 
26
(5) 
27

28

29
(1) 
30
(4) 





From: Nicolas Neuss <Nicolas.Neuss@iw...>  20020929 13:33:56

I forgot: cvs diff lapack.lisp Index: lapack.lisp =================================================================== RCS file: /cvsroot/matlisp/matlisp/src/lapack.lisp,v retrieving revision 1.6 diff r1.6 lapack.lisp 68,69c68,69 < "DGESV" "DGEEV" "DGETRF" "DGESVD" < "ZGESV" "ZGEEV" "ZGETRF" "ZGESVD" ))  > "DGESV" "DGEEV" "DGETRF" "DGETRS" "DGESVD" > "ZGESV" "ZGEEV" "ZGETRF" "ZGETRS" "ZGESVD" )) 321a322,386 > (deffortranroutine dgetrs :void > " >  LAPACK routine (version 3.0)  > Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., > Courant Institute, Argonne National Lab, and Rice University > March 31, 1993 > > Purpose > ======= > > DGETRS solves a system of linear equations > A * X = B or A' * X = B > with a general NbyN matrix A using the LU factorization computed > by DGETRF. > > Arguments > ========= > > TRANS (input) CHARACTER*1 > Specifies the form of the system of equations: > = 'N': A * X = B (No transpose) > = 'T': A'* X = B (Transpose) > = 'C': A'* X = B (Conjugate transpose = Transpose) > > N (input) INTEGER > The order of the matrix A. N >= 0. > > NRHS (input) INTEGER > The number of right hand sides, i.e., the number of columns > of the matrix B. NRHS >= 0. > > A (input) DOUBLE PRECISION array, dimension (LDA,N) > The factors L and U from the factorization A = P*L*U > as computed by DGETRF. > > LDA (input) INTEGER > The leading dimension of the array A. LDA >= max(1,N). > > IPIV (input) INTEGER array, dimension (N) > The pivot indices from DGETRF; for 1<=i<=N, row i of the > matrix was interchanged with row IPIV(i). > > B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) > On entry, the right hand side matrix B. > On exit, the solution matrix X. > > LDB (input) INTEGER > The leading dimension of the array B. LDB >= max(1,N). > > INFO (output) INTEGER > = 0: successful exit > < 0: if INFO = i, the ith argument had an illegal value > > " > (trans :string :input) > (n :integer :input) > (nhrs :integer :input) > (a (* :doublefloat) :input) > (lda :integer :input) > (ipiv (* :integer) :input) > (b (* :doublefloat) :inputoutput) > (ldb :integer :input) > (info :integer :output) > ) > 694a760,823 > (info :integer :output) > ) > > (deffortranroutine zgetrs :void > " >  LAPACK routine (version 3.0)  > Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., > Courant Institute, Argonne National Lab, and Rice University > September 30, 1994 > > Purpose > ======= > > ZGETRS solves a system of linear equations > A * X = B, A**T * X = B, or A**H * X = B > with a general NbyN matrix A using the LU factorization computed > by ZGETRF. > > Arguments > ========= > > TRANS (input) CHARACTER*1 > Specifies the form of the system of equations: > = 'N': A * X = B (No transpose) > = 'T': A**T * X = B (Transpose) > = 'C': A**H * X = B (Conjugate transpose) > > N (input) INTEGER > The order of the matrix A. N >= 0. > > NRHS (input) INTEGER > The number of right hand sides, i.e., the number of columns > of the matrix B. NRHS >= 0. > > A (input) COMPLEX*16 array, dimension (LDA,N) > The factors L and U from the factorization A = P*L*U > as computed by ZGETRF. > > LDA (input) INTEGER > The leading dimension of the array A. LDA >= max(1,N). > > IPIV (input) INTEGER array, dimension (N) > The pivot indices from ZGETRF; for 1<=i<=N, row i of the > matrix was interchanged with row IPIV(i). > > B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) > On entry, the right hand side matrix B. > On exit, the solution matrix X. > > LDB (input) INTEGER > The leading dimension of the array B. LDB >= max(1,N). > > INFO (output) INTEGER > = 0: successful exit > < 0: if INFO = i, the ith argument had an illegal value > " > (trans :string :input) > (n :integer :input) > (nhrs :integer :input) > (a (* :complexdoublefloat) :input) > (lda :integer :input) > (ipiv (* :integer) :input) > (ldb :integer :input) > (b (* :complexdoublefloat) :inputoutput) 