From: David K. <dav...@ak...> - 2017-12-13 01:43:45
|
I suggest you first get an example working using a standard finite element implementation (e.g. based on one of the "systems_of_equations" examples). Once you have that working you can then try to convert it into a reduced basis implementation. But note that normally reduced basis is not used for 1D models since those models are generally fast enough to solve without any model reduction. A better case to consider might be 3D elasticity. David On Tue, Dec 12, 2017 at 8:10 PM, 강신성 <ss...@pu...> wrote: > > > > Hello everyone, > > > > I want to solve the Euler cantilever beam equation using reduced basis > to understand the RB method. > > However, I don't know how to deal with a 2nd derivative term of a weak > form of the Euler beam equation. > > > > First, I created a 1D mesh. Then, refferring to the RB examples, I made > a basic RB code. > > After that, I tried to use "SECOND" variable and "d2phi" in the RB code, > but I can't solve it. The error message is as follows. > ============================================================ > ===================== > > *************************************************************** > * Running App run_Beam_Euler-opt > *************************************************************** > > ./run_Beam_Euler-opt 2>&1 | tee output.txt > Mesh Information: > elem_dimensions()={1} > spatial_dimension()=2 > n_nodes()=15 > n_local_nodes()=15 > n_elem()=7 > n_local_elem()=7 > n_active_elem()=7 > n_subdomains()=1 > n_partitions()=1 > n_processors()=1 > n_threads()=1 > processor_id()=0 > > EquationSystems > n_systems()=1 > System #0, "RBElasticity" > Type "RBConstruction" > Variables="u" > Finite Element Types="LAGRANGE" > Approximation Orders="SECOND" > n_dofs()=15 > n_local_dofs()=15 > n_constrained_dofs()=1 > n_local_constrained_dofs()=1 > n_vectors()=1 > n_matrices()=1 > DofMap Sparsity > Average On-Processor Bandwidth <= 3.8 > Average Off-Processor Bandwidth <= 0 > Maximum On-Processor Bandwidth <= 5 > Maximum Off-Processor Bandwidth <= 0 > DofMap Constraints > Number of DoF Constraints = 1 > Average DoF Constraint Length= 0 > > Initializing training parameters with random training set... > Parameter length: log scaling = 0 > Parameter load: log scaling = 0 > Parameter point_load: log scaling = 0 > > RBConstruction parameters: > system name: RBElasticity > Nmax: 20 > Greedy relative error tolerance: 0.001 > Greedy absolute error tolerance: 1e-12 > Do we normalize RB error bound in greedy? 0 > Aq operators attached: 1 > Fq functions attached: 1 > n_outputs: 0 > Number of parameters: 3 > Parameter length: Min = 1, Max = 20 > Parameter load: Min = -5, Max = 5 > Parameter point_load: Min = -5, Max = 5 > n_training_samples: 1000 > quiet mode? 1 > > Assembling inner product matrix > *** Warning, This code is untested, experimental, or likely to see future > API changes: src/systems/dg_fem_context.C, line 35, compiled Aug 25 2017 at > 02:20:14 *** > Assembling affine operator 1 of 1 > Assembling affine vector 1 of 1 > Convergence error. Error id: -11 > Stack frames: 8 > 0: libMesh::print_trace(std::ostream&) > 1: libMesh::MacroFunctions::report_error(char const*, int, char const*, > char const*) > 2: libMesh::RBConstruction::check_convergence(libMesh:: > LinearSolver<double>&) > 3: libMesh::RBConstruction::compute_Fq_representor_innerprods(bool) > 4: libMesh::RBConstruction::train_reduced_basis(bool) > 5: ./run_Beam_Euler-opt() [0x416482] > 6: __libc_start_main > 7: ./run_Beam_Euler-opt() [0x416ed9] > [0] src/reduced_basis/rb_construction.C, line 2124, compiled Aug 25 2017 > at 02:17:58 > application called MPI_Abort(MPI_COMM_WORLD, 1) - process 0 > [unset]: aborting job: > application called MPI_Abort(MPI_COMM_WORLD, 1) - process 0 > ============================================================ > ===================== > > > I wonder if this is right way. If not, I want to know another way to > solve the Euler cantilever beam equation. > > > > Best regards, > > S. Kang. > > > ------------------------------------------------------------ > ------------------ > Check out the vibrant tech community on one of the world's most > engaging tech sites, Slashdot.org! http://sdm.link/slashdot > _______________________________________________ > Libmesh-users mailing list > Lib...@li... > https://lists.sourceforge.net/lists/listinfo/libmesh-users > |