
Description of the XDA/XDR mesh format used in
libMesh

Benjamin S. Kirk, John W. Peterson

February 3, 2004

1 Background

The XDA and XDR formats used by libMesh to store mesh data are an extension to the
mesh format used by the research code MGF, which was developed in the CFDLab at the
university of Texas at Austin. This efficient format has simply been extended to support
general element types.

1.1 XDR

XDR, or the External Data Representation, is a standard developed by Sun Microsystems
for storing binary data in a machine-independent format. Anyone who has suffered through
endian-issues in a heterogeneous machine environment will immediately see the benefit of
such a format. XDR is a C API that is available on all modern UNIX-type systems. The
XDR API is usually defined in the header file <rpc/rpc.h>.

1.2 XDA

So, I said XDR is available on all modern UNIX systems. . . Unfortunately, the world has
other types of machines, and not all of them immediately understand XDR. In libMesh, an
“XDA” file is the ASCII version of the data that would otherwise be written to an XDR file.
Another important use of the XDA file format is for debugging purposes. If there is some
problem with the data files you are writing, it is often solved by writing an ASCII version
of the same data, and examining it visually for errors. Once you’ve found the problem and
made your changes, you can seamlessly return to writing the binary XDR format.

2 The File Format

libMesh mesh files consist of two sections, the header and the data. The header contains
important size information. It defines the number of elements, number of nodes, etc. . . that
are in the mesh. The data section contains the actual element connectivity, the nodal
coordinates, and any boundary condition information. The XDA mesh used in this example
corresponds to the reference elements/2D/one quad.xda file distributed with libMesh.

1



2.1 Header

The header of an XDR/XDA file looks something like this:

DEAL 003:003
1 # Num. Elements
4 # Num. Nodes
4 # Sum of Element Weights
4 # Num. Boundary Conds.
65536 # String Size (ignore)
1 # Num. Element Blocks.
5 # Element types in each block.
1 # Num. of elements in each block.
Id String
Title String

The header defines several important sizes that are used to enable efficient, block-reading of
the data section. A line-by-line description of the header follows:

The first line of the file is a string that defines what code wrote the file. The reason for
this line is backwards-compatibility with MGF meshes. If the first line of the file indicates
that the mesh was written by MGF then the extensions to its format will not be used.

The next line contains a single integer that defines the number of elements in the mesh.
Anything after the # is ignored and may be used as a comment.

The next line contains the “total weight” of the mesh. This is simply Σen nodese, or the
sum over all the elements of the number of nodes in that element. As such, this is exactly
the length of the connectivity array for the entire mesh. This size is important since the
entire connectivity array may be read at once into a buffer of this length.

The number of boundary condition describes just that. In libMesh boundary conditions
are assigned to specific faces of elements. The format for specifying boundary conditions will
be discussed in the data section.

The next line defines the maximum string size for the subsequent identification strings
Id String and Title String. This is used to prevent buffer-overruns when reading ridicu-
lously long titles (I think). It may safely be ignored. These strings may be used for identifi-
cation purposes.

2.1.1 Augmented Header

The three lines after the string size are only read in the case of libMesh meshes since they
are an extension to the MGF format. libMesh supports hybrid grids, so these three lines
were added to the original MGF format to provide the necessary flexibility.

When reading and writing hybrid meshes, libMesh orders the elements into contiguous
blocks based on element type. For instance, in a mesh that has both quadrilaterals and
triangles, all the triangles will be written together, as will all the quadrilaterals. In this case
the number of element blocks would be 2. For the example given, there is only one element,
so there may be only one element block. The reason for this ordering is efficiency. It would
be possible to write the elements in any order, but then an additional ID would be necessary

2



to define the element type. Writing the elements in blocks like this allows a savings of n elem

integers, or 4∗n elem bytes.
The next line defines the type of element that is written in each block. There should an

entry on this line for each block. The value here corresponds to the integer representation
of the enum ElemTypes. Valid values of this enum may be found on the documentation page.

The final line defines the number of elements in each block. Again, there should be an
entry for each block. The sum of these values should be the number of elements in the mesh
(defined previously).

2.2 Data

The data section for this example is as follows:

0 1 2 3
0. 0. 0.
1. 0. 0.
1. 1. 0.
0. 1. 0.

0 0 0
0 1 1
0 2 2
0 3 3

The data section consists of two mandatory and one optional section. The mandatory
sections are the element connectivity and the nodal locations. The optional section defines
the boundary conditions (note that if the number of boundary conditions is set to 0 in the
header then the boundary condition section will not be read).

2.2.1 Connectivity

The connectivity section defines which nodes are connected to which elements. There is a
line for each element, and on that line there are as many values as there are nodes in the
element. In this case there is only one element, so the connectivity section contains only one
line. For this example the local nodes on the first element map to the global nodes 0, 1, 2,
and 3. (Note that, like all sensible codes, libMesh is 0-based). A more complicated example
of a hybrid mesh may be found in the Appendix.

Note that the number of lines on the connectivity section is the number of elements in
the mesh, and the total number of individual values in the connectivity section is identical
to the total weight specified in the header. This allows the entire connectivity array to be
read at once, if so desired.

Unlike many unstructured mesh formats, libMesh stores the element connectivity first.
The reason for this is that, for parallel meshes, libMesh partitions on elements. That is to say,
each element “belongs” to one and only one processor. By storing the element connectivity
first elements may be distributed to various processors before the nodal locations are read.
When the nodes are read they are only sent to the processors that need them.

3

http://libmesh.sourceforge.net/doxygen/namespacelibMeshEnums.html#a145


2.2.2 Nodes

The next section simply consists of (x, y, z) triples defining the location of each node. There
are as many lines in this section as there are nodes defined in the header. Note that libMesh
always expects 3 coordinate values for each point, even when the library is compiled to
support only 2D meshes. The entire node array is thus 3∗n nodes entries long. In this
example the z coordinate is identically 0. In general, z can be any number since it will be
ignored in 2D mode.

For the XDR binary format the coordinates are treated as libMesh real numbers, which
are defined at compile-time to be either floats or doubles. Note: In the future, nodes may
be written as floats and then cast to reals for space savings. In other words, don’t rely on
double precision for your nodal coordinates.

2.2.3 Boundary Conditions

Each boundary condition is defined by three integer numbers: the element number, the side
number on that element, and the boundary condition number. There will be a line in this
section for each boundary condition, up to the number of boundary conditions specified.
The boundary condition number may be any value which fits in a short int.

Note that the boundary condition numbers mean nothing to libMesh, they are simply
specified for certain faces of certain elements. The BoundaryInfo class may be used to
access the boundary condition numbers assigned to a particular element face. The user may
use these boundary conditions in their code to impose boundary conditions. There are no
“automatic” boundary conditions in libMesh, that is there are no special boundary condition
IDs that may be specified such that a certain boundary condition is imposed. Since libMesh
is a framework rather than a simulation tool it leaves the responsibility of assigning boundary
conditions with the user.

4

http://libmesh.sourceforge.net/doxygen/classBoundaryInfo.html


A Hybrid Mesh

This is an example XDA hybrid-element mesh. A picture

DEAL 003:003
10 # Num. Elements
11 # Num. Nodes
32 # Sum of Element Weights
0 # Num. Boundary Conds.
65536 # String Size (ignore)
2 # Num. Element Blocks.
5 3 # Element types in each block.
2 8 # Num. of elements in each block.
Id String
Title String
0 4 8 7
8 5 2 6
7 9 3
3 9 6
6 9 8
8 9 7
4 10 8
8 10 5
5 10 1
1 10 4
0. 0. 0.
2. 0. 0.
2. 2. 0.
0. 2. 0.
1. 0. 0.
2. 1. 0.
1. 2. 0.
0. 1. 0.
1. 1. 0.
.5 1.5 0.
1.5 .5 0.

5



Figure 1: Hybrid element mesh (note that the numbers are off by one)

6


	Background
	XDR
	XDA

	The File Format
	Header
	Augmented Header

	Data
	Connectivity
	Nodes
	Boundary Conditions


	Hybrid Mesh

