LTS (Learning to Search) is an implementation of an algorithm described in "LTS: Discriminative Subgraph Mining by Learning from Search History" in Data Engineering (ICDE), IEEE 27th International Conference, pages 207-218, 2011. The purpose of LTS is to find discriminative subgraphs, which are smaller graphs that are embedded in larger graphs that all share a certain trait. A discriminative subgraph can help to characterize a complex graph and can be used to classify new graphs with unknown traits. LTS is an improvement on other subgraph mining algorithms because it uses empirical data from the search history of a first pass to help weed out unpromising search directions. This allows a second pass to spend more time investigating promising areas of search to generate the most discriminative subgraphs more quickly than before.

Project Activity

See All Activity >

Follow LTS: Learning to Search

LTS: Learning to Search Web Site

Other Useful Business Software
Enterprise-grade ITSM, for every business Icon
Enterprise-grade ITSM, for every business

Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity.

Freshservice is an intuitive, AI-powered platform that helps IT, operations, and business teams deliver exceptional service without the usual complexity. Automate repetitive tasks, resolve issues faster, and provide seamless support across the organization. From managing incidents and assets to driving smarter decisions, Freshservice makes it easy to stay efficient and scale with confidence.
Try it Free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of LTS: Learning to Search!

Additional Project Details

Registered

2013-05-24