Materials Science and Technology
Nanomechanics

Atomic Simulation Guides Nanomechanics Theory

Continuum theory has been used for decades to analyze and predict the mechanics of materials and structures as diverse as airplanes to prosthetics. However, as existing and emergent technologies shrink to the nanometer range, quantities such as stress and strain become ill defined and the application of continuum mechanics in nanomechanical frameworks becomes suspect. Manufacturing implications are significant; for example, traditional design tools do not accurately apply to microscale or nanoscale electro-mechanical systems because continuum mechanics concepts, on which those design tools are based, do not apply on such length scales. While modeling and simulation methods (e.g., molecular dynamics) have provided a wealth of information for such systems, connections to engineering scale analysis are not clear.

Researchers at Sandia have been investigating and refining definitions for continuum variables at the atomic scale. The result is that quantities inherent to atomistic simulation, such as atom positions, velocities and inter-atomic forces, can be used to determine spatially varying stress fields. These definitions effectively overlay a continuum representation on an atomistic system. Weighted spatial averages of atom quantities within finite-sized volumes are used to estimate stress at the material points corresponding to those volumes. Time averaging these estimates permits meaningful comparison to continuum theory. For example, analysis of an edge dislocation in a crystal (an imperfection in the local ordering of the crystal's structure) reveals that averaging volumes surrounding continuum material points must be of a minimum dimension (~0.7 to 1.0 nm) in order for stress fields to be resolved in a continuous fashion (Fig. 1). This analysis also shows that variation of stress close to the dislocation core (or center) is not well represented by conventional local elasticity theory, but rather by more advanced non-local theory. Most significantly, marrying non-local elasticity theory to atomistic simulation permits direct determination of length scale parameters that achieve accurate description of the stress surrounding the material defect. Thus, atomistic simulation employing newly defined mechanics variables can be used to develop robust nanomechanics theory.

Atomistic-based expressions for stress were used to gain fundamental understanding of materials behavior:

For more information:
Technical Contacts:
Edmund B. Webb III
505-284-6517
ebwebb@sandia.gov

Jonathan A. Zimmerman
925-294-2437
jzimmer@sandia.gov

Science Matters Contact:
Alan Burns, Ph.D
505-844-9642
aburns@sandia.gov

Nanoscale stresses at defects require new theoretical approaches
During the growth of metallic thin films, isolated islands are first nucleated and then proceed to coalesce and form continuous planar films. While experiments have successfully quantified the average stress within a film during growth, little is known about the distribution of stress within a film or whether defects form as island coalescence occurs. Molecular dynamics simulations confirmed suppositions from experiment that coalescence happens in two stages: initial coalescence occurs when neighboring islands first join together. At that point a dislocation defect is formed and a concentration of tensile stress exists within the coalescence region (Fig. 2). After initial coalescence, ongoing coalescence is exhibited and new defects are periodically formed. While this ongoing coalescence stage reduces system energy through the elimination of surfaces, tensile stress continues to increase during defect formation events (Fig. 3). Such nano-mechanical analysis can provide guidance on choosing growth conditions that lead to films of specific morphology and structure.

References:

