|
From: Daniel P. <dp...@gm...> - 2015-01-18 19:49:45
|
My guess is that you might have a lexicon that does not cover the majority of whatever words you have in the transcripts (e.g. in data/train/text). In TIMIT I think the supplied transcription is at at a phone level; if you use a word level lexicon with that it won't work, and you'll get a lot of warnings about OOVs in exp/mono/log/compile_graphs.*.log Dan On Sun, Jan 18, 2015 at 5:50 AM, Naresh kumar <ell...@gm...> wrote: > Dear all, > I am building word level ASR system using timit database. Currently I am > using new version of kaldi which is s5. I have reduced the phone mapping to > 39. I used 3980 utterances to train language and acoustic models. > > I have computed mfcc features for all training files. Monophone training > was done. The decoding has been done for all the test sentences. After > decoding I found that all the estimated sentences are very bad (%WER is > 123.2). > > My lexicon looks like this: > > > > > *abbreviate ah b r iy v iy ey tabides ah b ay d zability ah b ih l > ah t iy* > While monophone training I found: > > > > > > > > *WARNING (gmm-acc-stats-ali:main():gmm-acc-stats-ali.cc:79) No alignment > for utterance fpjf0_sx352WARNING > (gmm-acc-stats-ali:main():gmm-acc-stats-ali.cc:79) No alignment for > utterance msms0_si1433WARNING > (gmm-acc-stats-ali:main():gmm-acc-stats-ali.cc:79) No alignment for > utterance mwad0_si1062WARNING > (gmm-acc-stats-ali:main():gmm-acc-stats-ali.cc:79) No alignment for > utterance msms0_si1433WARNING > (gmm-acc-stats-ali:main():gmm-acc-stats-ali.cc:79) No alignment for > utterance mwad0_si1062WARNING > (gmm-acc-stats-ali:main():gmm-acc-stats-ali.cc:79) No alignment for > utterance mwad0_si1062* > > > > *1118 warnings in exp/mono/log/acc.*.*.log4680 warnings in > exp/mono/log/update.*.log43824 warnings in exp/mono/log/align.*.*.log* > Done > fsttablecompose data/lang_test_bg/L_disambig.fst data/lang_test_bg/G.fst > fstminimizeencoded > fstdeterminizestar --use-log=true > fstisstochastic data/lang_test_bg/tmp/LG.fst > 0.693359 -0.0765151 > [info]: LG not stochastic. > fstcomposecontext --context-size=1 --central-position=0 > --read-disambig-syms=data/lang_test_bg/phones/disambig.int > --write-disambig-syms=data/lang_test_bg/tmp/disambig_ilabels_1_0.int > data/lang_test_bg/tmp/ilabels_1_0 > fstisstochastic data/lang_test_bg/tmp/CLG_1_0.fst > 0.693359 -0.0765151 > [info]: CLG not stochastic. > make-h-transducer --disambig-syms-out=exp/mono/graph/disambig_tid.int > --transition-scale=1.0 data/lang_test_bg/tmp/ilabels_1_0 exp/mono/tree > exp/mono/final.mdl > fsttablecompose exp/mono/graph/Ha.fst data/lang_test_bg/tmp/CLG_1_0.fst > fstdeterminizestar --use-log=true > fstminimizeencoded > fstrmsymbols exp/mono/graph/disambig_tid.int > fstrmepslocal > fstisstochastic exp/mono/graph/HCLGa.fst > 0.693359 -0.0761903 > HCLGa is not stochastic > add-self-loops --self-loop-scale=0.1 --reorder=true exp/mono/final.mdl > steps/decode.sh --nj 5 --cmd run.pl exp/mono/graph data/dev > exp/mono/decode_dev > decode.sh: feature type is delta > steps/decode.sh --nj 5 --cmd run.pl exp/mono/graph data/test > exp/mono/decode_test > decode.sh: feature type is delta > > > Please let me know how to solve this issues of all the warnings and to > reduce the WER. > > -- > > Regards > Naresh Kumar > > > ------------------------------------------------------------------------------ > New Year. New Location. New Benefits. New Data Center in Ashburn, VA. > GigeNET is offering a free month of service with a new server in Ashburn. > Choose from 2 high performing configs, both with 100TB of bandwidth. > Higher redundancy.Lower latency.Increased capacity.Completely compliant. > http://p.sf.net/sfu/gigenet > _______________________________________________ > Kaldi-users mailing list > Kal...@li... > https://lists.sourceforge.net/lists/listinfo/kaldi-users > > |