JProGraM (PRObabilistic GRAphical Models in Java) is a statistical machine learning library. It supports statistical modeling and data analysis along three main directions: (1) probabilistic graphical models (Bayesian networks, Markov random fields, dependency networks, hybrid random fields); (2) parametric, semiparametric, and nonparametric density estimation (Gaussian models, nonparanormal estimators, Parzen windows, Nadaraya-Watson estimator); (3) generative models for random networks (small-world, scale-free, exponential random graphs, Fiedler random fields), subgraph sampling algorithms (random walk, snowball, etc.), and spectral decomposition.
License
GNU General Public License version 2.0 (GPLv2)Follow JProGraM
nel_h2
Build Securely on AWS with Proven Frameworks
Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
Rate This Project
Login To Rate This Project
User Reviews
Be the first to post a review of JProGraM!