## [4ede1e]: itpp / base / algebra / det.h  Maximize  Restore  History

### 71 lines (56 with data), 2.1 kB

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 /*! * \file * \brief Definitions of determinant calculations * \author Tony Ottosson * * ------------------------------------------------------------------------- * * Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors) * * This file is part of IT++ - a C++ library of mathematical, signal * processing, speech processing, and communications classes and functions. * * IT++ is free software: you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) any * later version. * * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License along * with IT++. If not, see . * * ------------------------------------------------------------------------- */ #ifndef DET_H #define DET_H #include namespace itpp { /*! \brief Determinant of real square matrix. \ingroup determinant Calculate determinant of the real matrix \f$\mathbf{X}\f$ Uses LU-factorisation. \f[ \det(\mathbf{X}) = \det(\mathbf{P}^T \mathbf{L}) \det(\mathbf{U}) = \det(\mathbf{P}^T) \prod(\mathrm{diag}(\mathbf{U})) \f] and the determinant of the permuation matrix is \f$\pm 1\f$ depending on the number of row permutations */ double det(const mat &X); /*! \brief Determinant of complex square matrix. \ingroup determinant Calculate determinant of the complex matrix \f$\mathbf{X}\f$ Uses LU-factorisation. \f[ \det(\mathbf{X}) = \det(\mathbf{P}^T \mathbf{L}) \det(\mathbf{U}) = \det(\mathbf{P}^T) \prod(\mathrm{diag}(\mathbf{U})) \f] and the determinant of the permuation matrix is \f$\pm 1\f$ depending on the number of row permutations */ std::complex det(const cmat &X); } // namespace itpp #endif // #ifndef DET_H