statFileName="/home/duy/Desktop/JBS/results/combined-frequency-similarity-results-DD.txt"
outputImage=TRUE outputImage=FALSE
data = read.table(statFileName, header=FALSE)
par(mfrow=c(1, 2)) # display 2 figures / row on one row
x = c(.1, .2, .3, .4, .5, .6, .7, .8, .9, 1.0)
lColors=c('red', 'green', 'blue', 'black')
lStyles=c(1, 2, 3, 4)
lPlotChars=c(21, 22, 23, 24)
cexValueLegend=.9
if (outputImage == TRUE){ outputImageFileName = "output.eps" postscript(file=outputImageFileName, horizontal=FALSE, width=10, height=6) outputImageFileName = "output.png" png(filename=outputImageFileName, width = 800, height = 600) }
maxY = max(data[2, 3:12], data[6, 3:12])
plot(x, data[2, 3:12], type="b", xlab="Similarity", ylab="Frequency", main=data[2, 2:2], pch=lPlotChars[1], lty=lStyles[1], col=lColors[1], ylim=c(0, maxY)) lines(x, data[6, 3:12], type="b", xlab="Similarity", ylab="Frequency", pch=lPlotChars[2], lty=lStyles[2], col=lColors[2])
legend(0.1, maxY, c(toString(data[2:2, 1]), toString(data[6:6, 1])), cex=cexValueLegend, col=lColors, pch=lPlotChars, lty=lStyles, horiz=FALSE, bty="n")
maxY=max(data[5, 3:12], data[9, 3:12], data[11, 3:12], data[12, 3:12])
plot(x, data[5, 3:12], type="b", xlab="Similarity", ylab="Frequency", main=data[10, 2:2], pch=lPlotChars[1], lty=lStyles[1], col=lColors[1], ylim=c(0, maxY)) lines(x, data[9, 3:12], type="b", xlab="Similarity", ylab="Frequency", pch=lPlotChars[2], lty=lStyles[2], col=lColors[2]) lines(x, data[11, 3:12], type="b", xlab="Similarity", ylab="Frequency", pch=lPlotChars[2], lty=lStyles[2], col=lColors[2]) lines(x, data[12, 3:12], type="b", xlab="Similarity", ylab="Frequency", pch=lPlotChars[3], lty=lStyles[3], col=lColors[3])
legend(0.1, maxY, c(toString(data[5:5, 1]), toString(data[9:9, 1]), toString(data[9:9, 1]), toString(data[12:12, 1])), cex=cexValueLegend, col=lColors, pch=lPlotChars, lty=lStyles, horiz=FALSE, bty="n")
plot(x, data[2, 3:12], type="b", xlab="Similarity", ylab="Frequency", main=data[2, 1:1], pch=lPlotChars[1], lty=lStyles[1], col=lColors[1]) lines(x, data[3, 3:12], type="b", xlab="Similarity", ylab="Frequency", pch=lPlotChars[2], lty=lStyles[2], col=lColors[2]) lines(x, data[4, 3:12], type="b", xlab="Similarity", ylab="Frequency", pch=lPlotChars[3], lty=lStyles[3], col=lColors[3]) lines(x, data[5, 3:12], type="b", xlab="Similarity", ylab="Frequency", pch=lPlotChars[4], lty=lStyles[4], col=lColors[4])
legend(0.1, 30, data[2:5, 2], cex=cexValueLegend, col=lColors, pch=lPlotChars, lty=lStyles, horiz=FALSE, bty="n")
plot(x, data[6, 3:12], type="b", xlab="Similarity", ylab="Frequency", main=data[6, 1:1], pch=lPlotChars[1], lty=lStyles[1], col=lColors[1]) lines(x, data[7, 3:12], type="b", xlab="Similarity", ylab="Frequency", pch=lPlotChars[2], lty=lStyles[2], col=lColors[2]) lines(x, data[8, 3:12], type="b", xlab="Similarity", ylab="Frequency", pch=lPlotChars[3], lty=lStyles[3], col=lColors[3]) lines(x, data[9, 3:12], type="b", xlab="Similarity", ylab="Frequency", pch=lPlotChars[4], lty=lStyles[4], col=lColors[4])
legend(0.1, 75, data[6:9, 2], cex=cexValueLegend, col=lColors, pch=lPlotChars, lty=lStyles, horiz=FALSE, bty="n")
if (outputImage){ dev.off() }
Log in to post a comment.
This R script is used to print results obtained by combining frequency of change pattern vs. MAA (non) correlations.
author: Duy Dinh, CRP Henri Tudor
date: 22 Oct. 2013
-------------------------------------- SETTINGS
(please change the values of the following variables accordingly)
statFileName="/home/duy/Desktop/JBS/results/combined-frequency-similarity-results.txt"
statFileName="/home/duy/Desktop/JBS/results/combined-frequency-similarity-results-DD.txt"
outputImage=TRUE
outputImage=FALSE
------------------------------------- END SETTINGS
data = read.table(statFileName, header=FALSE)
transpose of data
data = t(data)
par(mfrow=c(1, 2)) # display 2 figures / row on one row
par(mfrow=c(2, 2)) # display 2 figures / row on two rows
x = c(.1, .2, .3, .4, .5, .6, .7, .8, .9, 1.0)
line colors
lColors=c('red', 'green', 'blue', 'black')
line styles
lStyles=c(1, 2, 3, 4)
line plot characters
lPlotChars=c(21, 22, 23, 24)
cexValueLegend=.9
start graphics drawing
if (outputImage == TRUE){
outputImageFileName = "output.eps"
postscript(file=outputImageFileName, horizontal=FALSE, width=10, height=6)
outputImageFileName = "output.png"
png(filename=outputImageFileName, width = 800, height = 600)
}
--------------------- Step 1: plot the TRUE IMPACT results
maxY = max(data[2, 3:12], data[6, 3:12])
plot(x, data[2, 3:12], type="b", xlab="Similarity", ylab="Frequency", main=data[2, 2:2], pch=lPlotChars[1], lty=lStyles[1], col=lColors[1], ylim=c(0, maxY))
lines(x, data[6, 3:12], type="b", xlab="Similarity", ylab="Frequency", pch=lPlotChars[2], lty=lStyles[2], col=lColors[2])
add legend
legend(0.1, maxY, c(toString(data[2:2, 1]), toString(data[6:6, 1])), cex=cexValueLegend,
col=lColors,
pch=lPlotChars,
lty=lStyles,
horiz=FALSE, bty="n")
--------------------- Step 2: plot the FALSE IMPACT 3 results
maxY=max(data[5, 3:12], data[9, 3:12], data[11, 3:12], data[12, 3:12])
plot(x, data[5, 3:12], type="b", xlab="Similarity", ylab="Frequency", main=data[10, 2:2], pch=lPlotChars[1], lty=lStyles[1], col=lColors[1], ylim=c(0, maxY))
lines(x, data[9, 3:12], type="b", xlab="Similarity", ylab="Frequency", pch=lPlotChars[2], lty=lStyles[2], col=lColors[2])
lines(x, data[11, 3:12], type="b", xlab="Similarity", ylab="Frequency", pch=lPlotChars[2], lty=lStyles[2], col=lColors[2])
lines(x, data[12, 3:12], type="b", xlab="Similarity", ylab="Frequency", pch=lPlotChars[3], lty=lStyles[3], col=lColors[3])
add legend
legend(0.1, maxY, c(toString(data[5:5, 1]), toString(data[9:9, 1]), toString(data[9:9, 1]), toString(data[12:12, 1])), cex=cexValueLegend,
col=lColors,
pch=lPlotChars,
lty=lStyles,
horiz=FALSE, bty="n")
--------------------- Step 3: plot MOVE results
plot(x, data[2, 3:12], type="b", xlab="Similarity", ylab="Frequency", main=data[2, 1:1], pch=lPlotChars[1], lty=lStyles[1], col=lColors[1])
lines(x, data[3, 3:12], type="b", xlab="Similarity", ylab="Frequency", pch=lPlotChars[2], lty=lStyles[2], col=lColors[2])
lines(x, data[4, 3:12], type="b", xlab="Similarity", ylab="Frequency", pch=lPlotChars[3], lty=lStyles[3], col=lColors[3])
lines(x, data[5, 3:12], type="b", xlab="Similarity", ylab="Frequency", pch=lPlotChars[4], lty=lStyles[4], col=lColors[4])
add legend
legend(0.1, 30, data[2:5, 2], cex=cexValueLegend,
col=lColors,
pch=lPlotChars,
lty=lStyles,
horiz=FALSE, bty="n")
--------------------- Step 4: plot DERIVE results
plot(x, data[6, 3:12], type="b", xlab="Similarity", ylab="Frequency", main=data[6, 1:1], pch=lPlotChars[1], lty=lStyles[1], col=lColors[1])
lines(x, data[7, 3:12], type="b", xlab="Similarity", ylab="Frequency", pch=lPlotChars[2], lty=lStyles[2], col=lColors[2])
lines(x, data[8, 3:12], type="b", xlab="Similarity", ylab="Frequency", pch=lPlotChars[3], lty=lStyles[3], col=lColors[3])
lines(x, data[9, 3:12], type="b", xlab="Similarity", ylab="Frequency", pch=lPlotChars[4], lty=lStyles[4], col=lColors[4])
add legend
legend(0.1, 75, data[6:9, 2], cex=cexValueLegend,
col=lColors,
pch=lPlotChars,
lty=lStyles,
horiz=FALSE, bty="n")
if (outputImage){
dev.off()
}
Last edit: Duy Dinh 2013-10-22