Content-Type: multipart/related; boundary="------------060903060902030600040407" --------------060903060902030600040407 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Bonjour,
J'aimerais savoir est-ce qu'il est possible de déplacer le noeud d'une courbe sans pour autant déplacer ses poignées.

Pour être plus clair, j'appelle noeud un point de contrôle d'une courbe et j'appelle poignée le bout d'une des tangeante du noeud.
dessin explicatif figurant aussi en pièce-jointe

Sur le dessin ci-dessus imaginons qu'au début, on ait la courbe bleu et qu'on veuille obtenir, à la fin de l'opération, la courbe rouge.

Une méthode, celle que j'utilise jusqu'à présent est d'abord de déplacer le 2ème noeud, et donc ses poignées avec, puis de bouger les poignées afin d'obtenir la courbe souhaitée.

Ca serait un gain de temps et un plus indéniable si jamais je pouvais simplement bouger le 2ème noeud sans que ses poignées ne bougent.

Donc, est-ce que c'est possible ?
Merci d'avance pour vos réponses.
Cdt,
migounanounet

--------------060903060902030600040407 Content-Type: image/png Content-Transfer-Encoding: base64 Content-ID: iVBORw0KGgoAAAANSUhEUgAAAREAAABgCAYAAAA6nUZeAAAABHNCSVQICAgIfAhkiAAAAAlw SFlzAAAN1wAADdcBQiibeAAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoA ABX5SURBVHic7Z15dNTV2cc/v5nJnklIZF8SAgQIIAEFWZRVZBHK1rcqFJcqtti6Uemp1ApH oR77KtgKdUOoLwGVlsMmIkFb2WTfNAUrISYxISGSPSGz/37vH48xJBBIQpJJMvdzzj0z85ss zxDmO9/73Oc+VzMMw0ChaOacOXOGhx9+mNmzZ/Pkk096OxyfwuTtABSKG2X9+vWMGjWKGTNm sGTJEvbv3+/tkHwKTTkRRXNmw4YNLFiwgI83bKB/bi5bnU5+8/TTnDhxgrZt23o7PJ9AORFF s+bWW2/FdekSemIiRn4+/QsL0XWdXbt2eTs0n0GJiKL5kp1N9507WXnffdyzZg3vJyUxZP58 FixYwJw5c7wdnc9g8XYACkWtMQzYuBGjsBCsVv7nlVc4HBLC8xs3svXppxk2bZq3I/QpVE5E 0bw4dw5j61aIjEQbMAAGDqz0tPHee2hOJ/zyl14K0PdQTkTRPHC5YO1aDF2Hzp3RZswAf/8r vkyLj8f4/HM0lwv8/LwQqO+hnIii6XP8OMauXdCxI9rQodCrV/Vfq+sY69ahtW8P48c3Xow+ jHIiiqZLSQmsXo0RGgp9+6JNmnR9d2EyQWgoHD+uRKSRUCKiaHoYBiQmYhw7BtHRaCNHQnR0 jb9dGzIEIysL7fx56NSpAQNVgFriVTQ1zpyBhQsxsrJg8GC0WbNqJSCACEd4OGzf3jAxKiqh nIiiaZCbC2+/jWEYMGAA2ujR0L593X9ely4Yn36K5vGA2VxvYSquRCVWFd7F5YL334c9ezDu vBO6dUMbPBgsN/j5VliIsXkzWocOMHFi/cSquCpqOqPwHrt3w/33Y5SUYEyZgjZuHNqwYTcu IACtWsmUZts20PUb/3mKalHTGUXjk5ICr70Gfn4YP/0pxMRI4Vh9iMdlaL17Y6SkoO3eDWPH 1uvPVlSgRETReBQWwjvvwIEDGLNmQXAw2pAh0FC7bbt2hagoWLtWiUgDoqYziobH44ENG2DW LLBaMR54AHr0QLv77oYTEIDgYGjdWsYXXzTc7/FxVGJV0XDoOuzaBatWQUwMxsSJYLNJ1Wmb No0TQ0oKxldfoe3YIXEo6h01nVE0DLt3y9QlNBSeegojP182zcXHN+6Sa5cucPIk2O1w7BgM GtR4v9tHUE5EUb8cOgRvvSX3587FMJkgP19yH43lPqpg7NuHVlAgrmjlSq/E0JJRTkRRP5w8 KeJRWgqPPgo9elSUrU+a5NWCL61rVwyXCy07G5KS4OabvRZLS0Q5EcWNceYMvP02ZGXB3Lkw ahTGiRPiPoYOlaSmt/F4MLZsQfPzk7qRVatA07wdVYtBORFF3UhJkZzH2bPw8MNw992QlYXx ySfQtavX3UclzGbo3FmKz5xOmdZMmODtqFoMyokoakdSEiQkwNdfw4MPwrRp0sPj2DEoKGg6 7qMqFy5gfPklWrt2sGgR/OMfEBjo7ahaBMqJKK6PYUidRUKCbJSbPRuWLIGAAPjuO4zjx8V9 DB3adNxHVdq1A5sNuneXnMjataqFYj2hnIiietxuSEyEdetEMO6/H8aMkcY/DgfG0aNQVCQr L03RfVTBOHkSLBa0Nm3ggQdESG5kp7ACUCKiuBplZbB1K3z4IcTEwJw5lesryt1HTAzazTc3 XfdRlYICjP370X7yE8nnpKfDn/7k7aiaPWo6o6ggP19yBVu2wJAhsGwZ9OhR8fzl7mPEiGbh PioRESEuKjdXnMg998CXX0J8vLcja9YoJ6KAc+dg40apMp04Ee6770qbn54uS7cxMWj9+8ub sTly+jSGzYY2aJBM1d5/H/7+9+b7epoASkR8FacT/vUv2LQJsrNhxgz5ZLZaK3+d3S4rL0VF kji96SbvxFtfXLqEkZiINn261Io89hiMHi3CqagTSkR8jYwM2LwZduyA2FiYORNGjrx6XiM9 XXIf3btL7qOFfFobn36K1rcvdOwoRXIPPyzVtl27eju0ZokSEV/A44G9e8V1JCdLYdiMGbI5 7WrY7ZL7KC6WTmORkY0bb0OTnIyRmyuvDSSJvHkzrF7dfJLETQglIi2ZnBx5g2zbJp+6M2fC nXde++yWcvfRowdav34txn1UwunE2LZNpjTl3dSeeQZ695Z9P4paoUSkpeFwiOvYuRO++koO cJo5U4qsroXNJrmPkhLJfbQ091EFY88etOjoiilMXp7Uwbz6KvTp49XYmhtKRFoCui4nvu3c KQLSt6/sDRk9GoKCrv/9aWmy8tKS3UdV0tMxUlPlaIpy/v1vyY0kJEhxnaJGKBFpziQni3Ak JkqvjgkT4K67ar6CYrNJ7uPSJXEfERENG29Tonxn75QplQVj8WIIC5PpjaJGKBFpbuTkyC7U nTtlL8iECVLbUdtT4lJTpQw8NlZWKnzBfVTBOHQILTISevasuFhSIhW6CxbAiBHeC64ZoUSk OZCWBgcOwL59kJoqncsnTapbcx2bDePIESgrk9WJVq3qPdxmQ3Y2RlISWtWDv0+fFieiln1r hBKRpojNJjmOAwdkmM0wfLiMGzkdTrmPyhiGTGnGjbuyyO6jjyQ3smaN9IlVVIsSkaZCeroI xsGD8knYt6+IxrBhtZ+qVEW5j2oxTpxA8/eHfv2ufPKVV+DCBbn1dcG9BkpEvIXdLm7j4EER D12vcBu33lqzVZWa8O23GKdOofXsKUuX6s1Qmbw8jIMHJcFaFbcbHn8cBgyAefMaP7ZmghKR xiQjo0I0kpIgLk6cxvDhsuW+PrHZMA4fBrtdVl6U+6gWY/t2tOHDr14bk58Pv/gFPPWUOkWv GpSINCROZ0Vu4+BBeVwuGoMHywltDUG5++jVS4RKuY9rk5Qk3eBvueXqz585A/PnwxtvXL9o zwdRIlKfuFyyrf4//xHh+OorWT4sn6Y09H/AsjLJfTgc0m1MuY+aUVKC8dlnFTt7r8auXbJa 8+ab0mpR8SNKROqKrsO330rD4vKRmipdxfv2laY+t93WeJn9lBRpRKzcR50wEhPldL5rtUvc tEnOFH7rLd8qzLsOSkRqgq5LPuPMmQrBOHdODqOOi5OEZVycuI5GKJdOTExk5cqVWK1W5j/2 GIM8HnEfQ4fKsQiK2nP2LEb5WTnX4r33pA/LG29cuSzso6j2iFfj/PkKsThzRs5WCQ8XoYiL g1GjZMdnSEijh7Znzx7mzp3L4sWLKUxJYdLkyZzaupXO48erA5luhKgoSXZ7PNduB/DQQ1Bc DL/9Lbz+ev2tojVjlBPJyak8Jfnvf8Hfv8JdlI8m8gk/e/ZshgwZwpNjx0JWFvO3bCGyQwcW LVrk7dCaPcbu3WgxMTWry3npJekIt3z5tVsr+AAt1okUFxezfv16zp49ywNTpzIwIgIyM2Vk ZFTc9/MTVxEXBz/7mdw24QbEbdu2JTXjAu/l9SKwVT+Op/6dW9vFczgVQgN+GIFyG9Bi/7oN g9a1K0ZamrQIuB7PPgvPPQd//KN0jK9rFXELoGU4EcOA77//URj0jAz6LF5MXEgI8WYzq7Kz WXnHHcy4/XZJfJaPLl2a3QpGcnIyw4YNY+y4ieQXFHI66Us2fPY1hiWUUjuUOOGSA0rtoBuV RaXSuOyan2rmJbjdUgY/daq40evhcomQeDziTHy0fUDzERGXCy5evMJN6Nk56AUFeMIjcLXv hKt1e3aez+TVxI/454uv027ULew48DkrV65kz5491f54XZcyDqdT+vqU37/a4+quud2iZ+U/ D+Tx5dfK75dfv/z5qtdMJvmAM5vltnw4HAUcPryOkBArd9xxL8HBQZWeN5vFYGlm8JjArYEb MPzABTh0sLvB5oJSh/yeakXGv+K+2QcWfIwDB9Datq18VMa10HVYulSmNq++6pU8mbfxvog4 HHIOSF4e7pyLuHNycecXopeUYlwqw7DbMVwedJMZtzUcd0gYemAQ+PtjMoGumXGYA3CaA3Fq ATi0QP518iAbEt9nyTMfkFoaxdHjn7Bnz8vMmXOwWpEwDPnw8feXD5Ty+1d7XN01i6Uit1m+ wqppla+V3y+/fvnzVa/pugjT1YbLVfvnHA6ptrfZZDid8jpCwyAkAoLCIMgKfiHgFwTmQMAi 4uPRwKyBvwmCTBDkB9YgiAyF1q0gLEiEJiQATLXM7x4/fpzs7GzCwsKwWq307NmTEG+9Gc+f x/j6a9mUV1MMQ3IjSUnwl780O3d7o2iGYRh2u52ZM2fSunVr3n33XfxrYuWug6ewGEfWRVwX LuK6mIcrrxi9+BKGzQZuJyZDRzNp4O+PHhLy4+HKbpeOy23C5vGjVA+kxAihzBTGJb9wHEYg TsMfN4F4tAB0UwAWP9MVb2yLxcO8eT0YMGA0vXrFs3Hj6zzxxFKmTZtdrUj4Yn9ewxAxuVxY Lh+VrtuhzAEODzgMcBk/OBwTaH4QEAL+IWAOADxg1sFfg0ALWAMgLBgiw6BNOLSLFLEpF0+r 1codd9xBWVkZGRkZjBkzhtWrV3vnH0XXZUozYULtXcWqVfDZZ7BihSz/+wiaruvGvffei8lk wuPxkJuby5YtWwi/bDVCdzixn79ISWY+9pxC3AXF6KWXwGZDczsxGW7MmoHJrGHyt6AF+IPF jG5z4nbq8onvMWPHH4cpCIefFUdgKxwhkRhhkfgFBxBkDSDUaiY0VP52Vqvc1vXg9pycHNas WcPZs2d58MEHGX15GzxFvWIYUFoKRUUyLhZCfgkUXZLpkt0NTgM8ZsACliARG90BHruLxT8P ZvmHLkID4NT+NaQl72f1mjW0Dq+9q6mX13P0KFpISN16rX7wgZwiuGKF5N18AMvvf/97cnNz WfngEvj2v/xv4gcM730zOx77AyZ/M6ZAPzQ/P3S7E93hwuPS8bjBpVtwaX54LGG4/YLRQ6wQ 1gpz60iCOrQmtHUwoaFwU6h3ltLbtWvHwoULG/8X+yCaJqJvtdbsfaPrUFgEOXlwLq2IkJBw IoOhyA5p2UXk28NZ9blMqQyXuJpgM4QHQ5tW0LkNtI2QKZR/AzhILSYG4/BhtLqIyKxZ8g8x b54kW/v3r/8AmxiWw4cPExcXh9liwWUJpNQwEXlTe0p73IJ/m1YEd25DWFQEIcGqlklRP5hM EBkhIzTAhttVxifrZhMeHk7Bt0ncNW4cf5gOuXmQfh4yv4fvC+F8HiSnyjQqIBT8Q8Wp+Blg DYS2rWSqFBb4wwiCEP86/L9t3ZrC4mI+WLaMqF69uPvuuzHVZhvBlCnS8/bZZ+HXv5bHLRit oKDAmDlzJuHh4QwcOJBNmzaxb98+rKqkV9FI7N27l8zMTIqKiigqKmLOnDl0vo6lKSiQfkEZ WZCRA9l5UFAKpkCIaAeBVtACQEdWl8KDLxOXHwSm/L6lips5deoU48aMYezgwaQVFgJw6NCh 2gkJyAriggWy+fKJJ1rsfibNMAzD6XTyyCOPsH//fvbt23fdP6BC0VQpKJCWtKmpMtK/g4JL 0CEK2kdBqzYQGAb4wSUXlDhkSvSjsATBK8/OoX9sLC/cFo9p+jRuGzSQpUuXMqUujqK0FJ5/ XhJHS5e2yFaLFgB/f38SEhK8HYtCccNERMgYOLDimtMp3SfLheVsqjwODYU+fSGmD3TqLEvc xTbIzEin3/BpHAi+mc4XDbp37056enrdAgoNhWXL4G9/g0cekVaLUVH182KbCN6vE1EovER2 trSzPXNGbm02WZDJyVnL9u1/5uWXl5CensaLL75IamoqETe6/X/HDtm0N3++HPXRQlAiolD8 QH6+iMnp0wabN6/n5Ml3aN8+ijlznmHy5IHExtasGv6aJCfLAVmxsfC737WI6Y0SEYWiGkpL xaWUO5WMDGmFGx8v3S27davjiqXTKXUk+/eLoAwYUO+xNyZKRBSKGmK3wzffwMmTcPSoTH8G DZIRH1+H/XcHD8oO4ClT4NFHm23ZtBIRhaKOZGeLmBw7JrOUPn3EoQwaVItuEoWFsmqTnw8v vCA7y5sZSkQUinqgrEwcypEjcOKEnKk+eLCM2NgaTHs2bYJ33pHitKlTGyXm+kKJiEJRz+i6 THuOHpVRXCzuZMQImfZUKyjp6bBoEXToAAsXNpluetdDiYhC0cDk5MChQ7Bnj2xQHDkSxoyp plzE7Ya334bERClSGzy4ytNutm7dyo4dO5g+fTqTJ0+ufSVtPaNERKFoRL77Dj7/HPbulbYj o0dL3++wsCpfeOIEvPiiPDlv3o+7WO+//35SU1OZMWMGCQkJjB07luXLlzf667gcJSIKhRcw DDnbbPduyaP06SPuZPDgy/o+l5RIcdqRIzB/Prn9+hEbG0tqairOfDd2SxkDBgwgMzOT4IY6 TbEG+G53WYXCi2ia5Efi42Xp+PBhOWTvzTdlv96YMdC7t1V6uJ46BX/+M0ZkJIauo+sGxQeO c760GI9Hx9s+QDkRhaIJkZ8vU53du6Wd5fjxMkIC3LBuHfctXMj3kZHM/NWveOeNd7ilczQv rXiXjnEdvBazEhGFoomSkgLbtsmZ8KNGycpvhC2Nf86bx45vvmH6E08wfPJ9OL84iqtjF7qP G4DZ0vhJViUiCkUTJy8PPv4YPv0U+vWDadOgd8an8Ne/wqhROB6cS/r+05hLi4m863YiOjTu 0rASEYWimWC3yzHAH30kqzkzx5cy5PgbaPv3wVNPkRbeDe3UKfS+/YgZ3rPR4lIiolA0MwxD 6k62bROXMqv/fxj5xcuY27Wm+NEn+P7kOfSAQLpMHEKQtY6dzmuBEhGFohmTnAxbtkDSKQ9z Qz9kaHICfg/cR0rHeCwZ6fgPH9LgSVclIgpFC+DiRdi+HY59fIFHCl+jX0gqpb/6DUUXChs8 6apERKFoQZSVyV6+bxO+4KG85bS9sy+ZA0ehOR0NlnRVIqJQtEDy8+EfCU78P/w/ptg3Yvzy AeyWoAZJuioRUShaMJmZsGVlJnHbX6VvtxLsUyfjDL+pXpOuSkQUCh/g669h/5LPGXbkr4TN vhMjqhN+tw+rl6SrEhGFwoc4utdG2vOrGcQRLPdMwt6tJ93uGnhDSVclIgqFj6Hr8MW6VIzX lhM1vitGj260mjK2zklXJSIKhY/icMCRFxNp+9UnBI8fjDt+IDEja3+IuRIRhcLHyU0t4ez8 lXQeGIajUxSd7x1PkLXmreuViCgUCgCOrzhA2NEdBA7qjWnECDoNjK7R9ykRUSgUP1KUdYmz C9+mQ58wSm/qROxDE66bdFUiolAoriBp9SFCk/agdW5P8NQJtO3ZvtqvVSKiUCiuSulFGykv rOGmbiGUWDsQ9+jVDyFXIqJQKK7J6YRDhJ47htsSSMTPpxPZTY73c7vdWCwWJSIKheL6lOWW kbZsHSsObuZoVhYXHYWcP3+eRYsWKRFRKBQ1JyggkJdbDSBq7DSc07uxfv16vHt0lkKhaFZ0 7RbDkLXL6Jj+Pa2NcNLT05WIKBSKmhMdHU1KbhqWFXNIL8siPT1dHV6lUChqzu23387jjz9O dHQ00dHRPPfcc/w/Wds1AbJgEhsAAAAASUVORK5CYII= --------------060903060902030600040407--