Menu

error

Help
gehan
2019-08-02
2019-08-02
  • gehan

    gehan - 2019-08-02

    dear experts,
    i do resting state functional MRI using 1.5 T machine and i am beginner using GIFT and get the following error can you help me?

     
  • gehan

    gehan - 2019-08-02

    dear experts:

    gift
    Figure window was quit
    Error using icatb_setup_analysis (line 77)
    Output directory is not selected

    Error in icatb_enterParametersGUI (line 17)
    icatb_setup_analysis;

    Error in gift>groupAnalysis_Callback (line 87)
    icatb_enterParametersGUI;

    Error in gui_mainfcn (line 95)
    feval(varargin{:});

    Error in gift (line 30)
    gui_mainfcn(gui_State, varargin{:});

    Error while evaluating UIControl Callback

    Figure window was quit
    Figure window was quit
    Error using icatb_select_data>listCallback (line 344)
    Data for dataset 2 is not selected
    Figure window was quit
    Error using icatb_select_data>listCallback (line 344)
    Data for dataset 2 is not selected
    Figure window was quit
    Error using icatb_select_data>listCallback (line 344)
    Data for dataset 3 is not selected
    Figure window was quit
    Error using icatb_select_data>listCallback (line 344)
    Data for dataset 3 is not selected
    Figure window was quit
    Error using icatb_select_data>listCallback (line 344)
    Data for dataset 2 is not selected
    Error using icatb_select_data>listCallback (line 344)
    Data for dataset 2 is not selected
    Figure window was quit
    Error using icatb_select_data>listCallback (line 344)
    Data for dataset 1 is not selected
    Creating Mask
    Default mask includes voxels >= mean. Using first file of each subject to create default mask ...
    Done Creating Mask

    Parameters are saved in C:\Users\gehan\Documents\MRI\gift\test1_ica_parameter_info.mat

    Please run the analysis using the same parameter file

    Parameters file succesfully loaded
    Opening run analysis GUI. Please wait ...


    GETTING DATA REDUCTION PARAMETERS----------------------

    Reduction step 1 starts with 11 groups and gets reduced to 11 groups
    -New Group #1: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 38 principal components
    -New Group #2: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 38 principal components
    -New Group #3: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 38 principal components
    -New Group #4: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 38 principal components
    -New Group #5: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 38 principal components
    -New Group #6: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 38 principal components
    -New Group #7: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 38 principal components
    -New Group #8: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 38 principal components
    -New Group #9: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 38 principal components
    -New Group #10: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 38 principal components
    -New Group #11: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 38 principal components
    Reduction step 2 starts with 11 groups and gets reduced to 1 groups
    -New Group #1: 11 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 38 principal components
    The new group will have a total of 418 stacked principal components
    This group will then be reduced to 25 principal components


    END GETTING DATA REDUCTION PARAMETERS----------------------

    Checking to make sure parameters are correct...
    Checking mask
    Checking principal component parameters
    Done with parameter error check


    STARTING DATA REDUCTION (PRINCIPAL COMPONENTS ANALYSIS)

    --Extracting principal components for data reduction( time #1 )

    --Doing pca on Subject #1 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 71 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    100% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #2 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 71 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    100% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #3 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 71 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    100% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #4 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 71 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    100% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #5 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 71 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    100% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #6 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 71 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    100% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #7 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 71 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    100% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #8 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 71 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    100% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #9 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 71 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    100% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #10 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 71 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    100% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #11 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 71 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    100% of (non-zero) eigenvalues retained.

    --Extracting principal components for data reduction( time #2 )
    Loading data-set 1 ...
    Loading data-set 2 ...
    Loading data-set 3 ...
    Loading data-set 4 ...
    Loading data-set 5 ...
    Loading data-set 6 ...
    Loading data-set 7 ...
    Loading data-set 8 ...
    Loading data-set 9 ...
    Loading data-set 10 ...
    Loading data-set 11 ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 71 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    79.9882% of (non-zero) eigenvalues retained.

    Done with data reduction( time # 2)


    ENDING DATA REDUCTION (PRINCIPAL COMPONENTS ANALYSIS)


    STARTING GROUP ICA STEP

    Using spatial ica ...

    Number of times ICA will run is 1

    Run 1 / 1

    Input data size [25,71] = 25 channels, 71 frames.
    Finding 25 ICA components using logistic ICA.
    Initial learning rate will be 0.00466, block size 4.
    Learning rate will be multiplied by 0.9 whenever angledelta >= 60 deg.
    Training will end when wchange < 1e-06 or after 512 steps.
    Online bias adjustment will be used.
    Removing mean of each channel ...
    Not removing mean of each channel!!!
    Final training data range: -4.91186 to 3.94865
    Computing the sphering matrix...
    Starting weights are the identity matrix ...
    Sphering the data ...
    Beginning ICA training ...
    step 1 - lrate 0.004660, wchange 0.502347
    step 2 - lrate 0.004660, wchange 0.290478
    step 3 - lrate 0.004660, wchange 0.169014, angledelta 57.3 deg
    step 4 - lrate 0.004660, wchange 0.258932, angledelta 71.1 deg
    step 5 - lrate 0.004194, wchange 0.211452, angledelta 79.0 deg
    step 6 - lrate 0.003775, wchange 0.145158, angledelta 75.3 deg
    step 7 - lrate 0.003397, wchange 0.147465, angledelta 63.7 deg
    step 8 - lrate 0.003057, wchange 0.154712, angledelta 92.0 deg
    step 9 - lrate 0.002752, wchange 0.073239, angledelta 77.4 deg
    step 10 - lrate 0.002477, wchange 0.057438, angledelta 61.3 deg
    step 11 - lrate 0.002229, wchange 0.030905, angledelta 54.9 deg
    step 12 - lrate 0.002229, wchange 0.052305, angledelta 70.2 deg
    step 13 - lrate 0.002006, wchange 0.029043, angledelta 65.8 deg
    step 14 - lrate 0.001805, wchange 0.028002, angledelta 51.4 deg
    step 15 - lrate 0.001805, wchange 0.025693, angledelta 44.1 deg
    step 16 - lrate 0.001805, wchange 0.024127, angledelta 44.7 deg
    step 17 - lrate 0.001805, wchange 0.038375, angledelta 54.1 deg
    step 18 - lrate 0.001805, wchange 0.038327, angledelta 57.9 deg
    step 19 - lrate 0.001805, wchange 0.030858, angledelta 47.1 deg
    step 20 - lrate 0.001805, wchange 0.032243, angledelta 50.2 deg
    step 21 - lrate 0.001805, wchange 0.030432, angledelta 50.7 deg
    step 22 - lrate 0.001805, wchange 0.033305, angledelta 54.6 deg
    step 23 - lrate 0.001805, wchange 0.032198, angledelta 62.6 deg
    step 24 - lrate 0.001625, wchange 0.028622, angledelta 62.2 deg
    step 25 - lrate 0.001462, wchange 0.030154, angledelta 65.9 deg
    step 26 - lrate 0.001316, wchange 0.025722, angledelta 78.7 deg
    step 27 - lrate 0.001185, wchange 0.023005, angledelta 82.5 deg
    step 28 - lrate 0.001066, wchange 0.010949, angledelta 70.6 deg
    step 29 - lrate 0.000959, wchange 0.006935, angledelta 51.6 deg
    step 30 - lrate 0.000959, wchange 0.006351, angledelta 47.5 deg
    step 31 - lrate 0.000959, wchange 0.010831, angledelta 56.4 deg
    step 32 - lrate 0.000959, wchange 0.008047, angledelta 48.4 deg
    step 33 - lrate 0.000959, wchange 0.008563, angledelta 55.4 deg
    step 34 - lrate 0.000959, wchange 0.007829, angledelta 48.4 deg
    step 35 - lrate 0.000959, wchange 0.010469, angledelta 64.1 deg
    step 36 - lrate 0.000864, wchange 0.007972, angledelta 65.1 deg
    step 37 - lrate 0.000777, wchange 0.005104, angledelta 53.8 deg
    step 38 - lrate 0.000777, wchange 0.004924, angledelta 52.4 deg
    step 39 - lrate 0.000777, wchange 0.008782, angledelta 63.1 deg
    step 40 - lrate 0.000699, wchange 0.005566, angledelta 65.9 deg
    step 41 - lrate 0.000629, wchange 0.002535, angledelta 57.4 deg
    step 42 - lrate 0.000629, wchange 0.003493, angledelta 60.5 deg
    step 43 - lrate 0.000567, wchange 0.002250, angledelta 55.6 deg
    step 44 - lrate 0.000567, wchange 0.003391, angledelta 58.8 deg
    step 45 - lrate 0.000567, wchange 0.002644, angledelta 34.3 deg
    step 46 - lrate 0.000567, wchange 0.004001, angledelta 70.2 deg
    step 47 - lrate 0.000510, wchange 0.003879, angledelta 81.1 deg
    step 48 - lrate 0.000459, wchange 0.001259, angledelta 76.2 deg
    step 49 - lrate 0.000413, wchange 0.001081, angledelta 39.9 deg
    step 50 - lrate 0.000413, wchange 0.002138, angledelta 57.9 deg
    step 51 - lrate 0.000413, wchange 0.001730, angledelta 49.2 deg
    step 52 - lrate 0.000413, wchange 0.000991, angledelta 42.5 deg
    step 53 - lrate 0.000413, wchange 0.002593, angledelta 59.1 deg
    step 54 - lrate 0.000413, wchange 0.001667, angledelta 63.3 deg
    step 55 - lrate 0.000372, wchange 0.000871, angledelta 67.8 deg
    step 56 - lrate 0.000335, wchange 0.000708, angledelta 50.3 deg
    step 57 - lrate 0.000335, wchange 0.002180, angledelta 78.3 deg
    step 58 - lrate 0.000301, wchange 0.000539, angledelta 83.7 deg
    step 59 - lrate 0.000271, wchange 0.000943, angledelta 67.0 deg
    step 60 - lrate 0.000244, wchange 0.000277, angledelta 66.7 deg
    step 61 - lrate 0.000219, wchange 0.000605, angledelta 69.1 deg
    step 62 - lrate 0.000198, wchange 0.000472, angledelta 78.8 deg
    step 63 - lrate 0.000178, wchange 0.000356, angledelta 71.1 deg
    step 64 - lrate 0.000160, wchange 0.000159, angledelta 54.4 deg
    step 65 - lrate 0.000160, wchange 0.000196, angledelta 56.5 deg
    step 66 - lrate 0.000160, wchange 0.000199, angledelta 63.2 deg
    step 67 - lrate 0.000144, wchange 0.000295, angledelta 76.0 deg
    step 68 - lrate 0.000130, wchange 0.000081, angledelta 74.0 deg
    step 69 - lrate 0.000117, wchange 0.000203, angledelta 72.9 deg
    step 70 - lrate 0.000105, wchange 0.000093, angledelta 78.2 deg
    step 71 - lrate 0.000094, wchange 0.000138, angledelta 73.0 deg
    step 72 - lrate 0.000085, wchange 0.000036, angledelta 66.5 deg
    step 73 - lrate 0.000077, wchange 0.000068, angledelta 63.0 deg
    step 74 - lrate 0.000069, wchange 0.000024, angledelta 62.7 deg
    step 75 - lrate 0.000062, wchange 0.000051, angledelta 66.8 deg
    step 76 - lrate 0.000056, wchange 0.000020, angledelta 72.7 deg
    step 77 - lrate 0.000050, wchange 0.000030, angledelta 70.7 deg
    step 78 - lrate 0.000045, wchange 0.000023, angledelta 30.5 deg
    step 79 - lrate 0.000045, wchange 0.000010, angledelta 68.2 deg
    step 80 - lrate 0.000041, wchange 0.000014, angledelta 58.6 deg
    step 81 - lrate 0.000041, wchange 0.000009, angledelta 48.3 deg
    step 82 - lrate 0.000041, wchange 0.000010, angledelta 51.3 deg
    step 83 - lrate 0.000041, wchange 0.000019, angledelta 57.3 deg
    step 84 - lrate 0.000041, wchange 0.000018, angledelta 57.3 deg
    step 85 - lrate 0.000041, wchange 0.000016, angledelta 59.7 deg
    step 86 - lrate 0.000041, wchange 0.000012, angledelta 55.9 deg
    step 87 - lrate 0.000041, wchange 0.000010, angledelta 53.5 deg
    step 88 - lrate 0.000041, wchange 0.000013, angledelta 61.6 deg
    step 89 - lrate 0.000037, wchange 0.000012, angledelta 71.1 deg
    step 90 - lrate 0.000033, wchange 0.000008, angledelta 51.2 deg
    step 91 - lrate 0.000033, wchange 0.000006, angledelta 67.1 deg
    step 92 - lrate 0.000030, wchange 0.000005, angledelta 56.0 deg
    step 93 - lrate 0.000030, wchange 0.000005, angledelta 53.3 deg
    step 94 - lrate 0.000030, wchange 0.000006, angledelta 55.6 deg
    step 95 - lrate 0.000030, wchange 0.000012, angledelta 69.8 deg
    step 96 - lrate 0.000027, wchange 0.000004, angledelta 72.1 deg
    step 97 - lrate 0.000024, wchange 0.000005, angledelta 62.4 deg
    step 98 - lrate 0.000022, wchange 0.000007, angledelta 74.4 deg
    step 99 - lrate 0.000019, wchange 0.000002, angledelta 67.8 deg
    step 100 - lrate 0.000018, wchange 0.000004, angledelta 62.8 deg
    step 101 - lrate 0.000016, wchange 0.000002, angledelta 69.7 deg
    step 102 - lrate 0.000014, wchange 0.000001, angledelta 64.1 deg
    step 103 - lrate 0.000013, wchange 0.000001, angledelta 52.0 deg
    Sorting components in descending order of mean projected variance ...
    Components not ordered by variance.

    Using skewness of the distribution to determine the sign of the components ...
    Changing sign of component 1
    Changing sign of component 3
    Changing sign of component 5
    Changing sign of component 7
    Changing sign of component 8
    Changing sign of component 9
    Changing sign of component 10
    Changing sign of component 11
    Changing sign of component 12
    Changing sign of component 14
    Changing sign of component 15
    Changing sign of component 16
    Changing sign of component 17
    Changing sign of component 18
    Changing sign of component 19
    Changing sign of component 20
    Changing sign of component 24
    Changing sign of component 25


    DONE CALCULATING GROUP ICA


    STARTING BACK RECONSTRUCTION STEP

    Using GICA Back Reconstruction Approach ...

    Back reconstructing set 1
    -done back reconstructing set 1
    -saving back reconstructed ica data for set 1 -> test1_ica_br1.mat
    Back reconstructing set 2
    -done back reconstructing set 2
    -saving back reconstructed ica data for set 2 -> test1_ica_br2.mat
    Back reconstructing set 3
    -done back reconstructing set 3
    -saving back reconstructed ica data for set 3 -> test1_ica_br3.mat
    Back reconstructing set 4
    -done back reconstructing set 4
    -saving back reconstructed ica data for set 4 -> test1_ica_br4.mat
    Back reconstructing set 5
    -done back reconstructing set 5
    -saving back reconstructed ica data for set 5 -> test1_ica_br5.mat
    Back reconstructing set 6
    -done back reconstructing set 6
    -saving back reconstructed ica data for set 6 -> test1_ica_br6.mat
    Back reconstructing set 7
    -done back reconstructing set 7
    -saving back reconstructed ica data for set 7 -> test1_ica_br7.mat
    Back reconstructing set 8
    -done back reconstructing set 8
    -saving back reconstructed ica data for set 8 -> test1_ica_br8.mat
    Back reconstructing set 9
    -done back reconstructing set 9
    -saving back reconstructed ica data for set 9 -> test1_ica_br9.mat
    Back reconstructing set 10
    -done back reconstructing set 10
    -saving back reconstructed ica data for set 10 -> test1_ica_br10.mat
    Back reconstructing set 11
    -done back reconstructing set 11
    -saving back reconstructed ica data for set 11 -> test1_ica_br11.mat


    DONE WITH BACK RECONSTRUCTION STEP


    STARTING TO SCALE COMPONENT SETS

    Computing offset using the mean component maps which will be subtracted to the subject component maps ...
    Done
    --Subject 1 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 1 session 1 in nifti format and as matlab file
    --Subject 2 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 2 session 1 in nifti format and as matlab file
    --Subject 3 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 3 session 1 in nifti format and as matlab file
    --Subject 4 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 4 session 1 in nifti format and as matlab file
    --Subject 5 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 5 session 1 in nifti format and as matlab file
    --Subject 6 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 6 session 1 in nifti format and as matlab file
    --Subject 7 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 7 session 1 in nifti format and as matlab file
    --Subject 8 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 8 session 1 in nifti format and as matlab file
    --Subject 9 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 9 session 1 in nifti format and as matlab file
    --Subject 10 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 10 session 1 in nifti format and as matlab file
    --Subject 11 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 11 session 1 in nifti format and as matlab file


    DONE SCALING COMPONENTS


    STARTING GROUP STATS STEP

    --calculating mean ica component and timecourse
    done calculating mean for session 1
    done calculating mean for different sessions
    --calculating variance and standard deviation of components
    done calculating variance and standard deviation
    --calculating tmaps
    done calculating tmaps
    ...saving group stats data...
    Comparing mean image with the aggregate ...
    Value shows how much the mean component is close w.r.t aggregate component
    The comparison value is found to be 0.97484

    Computing spectra and FNC correlations of all subjects and sessions components ...
    Timecourses will be despiked when computing FNC correlations...
    Timecourses will be filtered when computing FNC correlations using HF cutoff of 0.15 Hz ...

    ......................................
    Group ICA Error Information:

    Undefined function 'abcdchk' for input arguments of type 'double'.

    Error in ==> icatb_butter at 0
    Error in ==> icatb_butter at 0
    Error in ==> filt_data at 25
    Error in ==> icatb_filt_data at 14
    Error in ==> icatb_postprocess_timecourses at 194
    Error in ==> icatb_groupStats at 503
    Error in ==> icatb_runAnalysis at 444
    Error in ==> runAnalysis_Callback at 95
    Error in ==> gui_mainfcn at 95
    Error in ==> gift at 30
    ......................................
    Error using icatb_displayErrorMsg (line 23)

    Error in icatb_runAnalysis (line 550)
    icatb_displayErrorMsg;

    Error in gift>runAnalysis_Callback (line 95)
    icatb_runAnalysis;

    Error in gui_mainfcn (line 95)
    feval(varargin{:});

    Error in gift (line 30)
    gui_mainfcn(gui_State, varargin{:});

    Error while evaluating UIControl Callback

    Reading data from source directory C:\Users\gehan\Documents\MRI\analysis\FunImgARCW ...

    The selected data folders are in the following order:
    C:\Users\gehan\Documents\MRI\analysis\FunImgARCW\Sub_001
    C:\Users\gehan\Documents\MRI\analysis\FunImgARCW\Sub_0010
    C:\Users\gehan\Documents\MRI\analysis\FunImgARCW\Sub_0011
    C:\Users\gehan\Documents\MRI\analysis\FunImgARCW\Sub_002
    C:\Users\gehan\Documents\MRI\analysis\FunImgARCW\Sub_003
    C:\Users\gehan\Documents\MRI\analysis\FunImgARCW\Sub_004
    C:\Users\gehan\Documents\MRI\analysis\FunImgARCW\Sub_005
    C:\Users\gehan\Documents\MRI\analysis\FunImgARCW\Sub_006
    C:\Users\gehan\Documents\MRI\analysis\FunImgARCW\Sub_007
    C:\Users\gehan\Documents\MRI\analysis\FunImgARCW\Sub_008
    C:\Users\gehan\Documents\MRI\analysis\FunImgARCW\Sub_009

    Please see the text file C:\Users\gehan\Documents\MRI\gift\test1\test1SelectedDataFolders.txt for the selected data folders in order
    Creating Mask
    Default mask includes voxels >= mean. Using first file of each subject to create default mask ...
    Done Creating Mask

    Parameters are saved in C:\Users\gehan\Documents\MRI\gift\test1\test1_ica_parameter_info.mat

    Please run the analysis using the same parameter file

    Parameters file succesfully loaded
    Opening run analysis GUI. Please wait ...


    GETTING DATA REDUCTION PARAMETERS----------------------

    Reduction step 1 starts with 11 groups and gets reduced to 11 groups
    -New Group #1: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 30 principal components
    -New Group #2: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 30 principal components
    -New Group #3: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 30 principal components
    -New Group #4: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 30 principal components
    -New Group #5: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 30 principal components
    -New Group #6: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 30 principal components
    -New Group #7: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 30 principal components
    -New Group #8: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 30 principal components
    -New Group #9: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 30 principal components
    -New Group #10: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 30 principal components
    -New Group #11: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 30 principal components
    Reduction step 2 starts with 11 groups and gets reduced to 1 groups
    -New Group #1: 11 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 30 principal components
    The new group will have a total of 330 stacked principal components
    This group will then be reduced to 20 principal components


    END GETTING DATA REDUCTION PARAMETERS----------------------

    Checking to make sure parameters are correct...
    Checking mask
    Checking principal component parameters
    Done with parameter error check


    STARTING DATA REDUCTION (PRINCIPAL COMPONENTS ANALYSIS)

    --Extracting principal components for data reduction( time #1 )

    --Doing pca on Subject #1 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 74 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    92.0733% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #2 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 74 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    96.2107% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #3 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 74 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    92.0875% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #4 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 74 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    93.6451% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #5 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 74 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    96.4671% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #6 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 74 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    94.9076% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #7 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 74 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    94.9058% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #8 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 74 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    98.9318% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #9 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 74 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    96.3886% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #10 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 74 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    97.9203% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #11 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 74 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    92.0558% of (non-zero) eigenvalues retained.

    --Extracting principal components for data reduction( time #2 )
    Loading data-set 1 ...
    Loading data-set 2 ...
    Loading data-set 3 ...
    Loading data-set 4 ...
    Loading data-set 5 ...
    Loading data-set 6 ...
    Loading data-set 7 ...
    Loading data-set 8 ...
    Loading data-set 9 ...
    Loading data-set 10 ...
    Loading data-set 11 ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 74 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    46.8382% of (non-zero) eigenvalues retained.

    Done with data reduction( time # 2)


    ENDING DATA REDUCTION (PRINCIPAL COMPONENTS ANALYSIS)


    STARTING GROUP ICA STEP

    Using spatial ica ...

    Number of times ICA will run is 1

    Run 1 / 1

    Input data size [20,74] = 20 channels, 74 frames.
    Finding 20 ICA components using logistic ICA.
    Initial learning rate will be 0.0050071, block size 4.
    Learning rate will be multiplied by 0.9 whenever angledelta >= 60 deg.
    Training will end when wchange < 1e-06 or after 512 steps.
    Online bias adjustment will be used.
    Removing mean of each channel ...
    Not removing mean of each channel!!!
    Final training data range: -5.35704 to 4.70659
    Computing the sphering matrix...
    Starting weights are the identity matrix ...
    Sphering the data ...
    Beginning ICA training ...
    step 1 - lrate 0.005007, wchange 0.465591
    step 2 - lrate 0.005007, wchange 0.318599
    step 3 - lrate 0.005007, wchange 0.310854, angledelta 62.4 deg
    step 4 - lrate 0.004506, wchange 0.188774, angledelta 58.4 deg
    step 5 - lrate 0.004506, wchange 0.187884, angledelta 69.8 deg
    step 6 - lrate 0.004056, wchange 0.255182, angledelta 77.4 deg
    step 7 - lrate 0.003650, wchange 0.204472, angledelta 90.1 deg
    step 8 - lrate 0.003285, wchange 0.143009, angledelta 81.6 deg
    step 9 - lrate 0.002957, wchange 0.085531, angledelta 76.5 deg
    step 10 - lrate 0.002661, wchange 0.077383, angledelta 52.9 deg
    step 11 - lrate 0.002661, wchange 0.066396, angledelta 61.5 deg
    step 12 - lrate 0.002395, wchange 0.052098, angledelta 58.3 deg
    step 13 - lrate 0.002395, wchange 0.041586, angledelta 48.4 deg
    step 14 - lrate 0.002395, wchange 0.065207, angledelta 49.6 deg
    step 15 - lrate 0.002395, wchange 0.067768, angledelta 65.8 deg
    step 16 - lrate 0.002155, wchange 0.059213, angledelta 88.1 deg
    step 17 - lrate 0.001940, wchange 0.034297, angledelta 69.9 deg
    step 18 - lrate 0.001746, wchange 0.023098, angledelta 62.7 deg
    step 19 - lrate 0.001571, wchange 0.018538, angledelta 49.6 deg
    step 20 - lrate 0.001571, wchange 0.018024, angledelta 58.0 deg
    step 21 - lrate 0.001571, wchange 0.020089, angledelta 55.9 deg
    step 22 - lrate 0.001571, wchange 0.027389, angledelta 57.8 deg
    step 23 - lrate 0.001571, wchange 0.030231, angledelta 46.2 deg
    step 24 - lrate 0.001571, wchange 0.022619, angledelta 65.1 deg
    step 25 - lrate 0.001414, wchange 0.016864, angledelta 64.7 deg
    step 26 - lrate 0.001273, wchange 0.013428, angledelta 65.5 deg
    step 27 - lrate 0.001145, wchange 0.008705, angledelta 65.3 deg
    step 28 - lrate 0.001031, wchange 0.006065, angledelta 47.0 deg
    step 29 - lrate 0.001031, wchange 0.013791, angledelta 49.9 deg
    step 30 - lrate 0.001031, wchange 0.021689, angledelta 63.1 deg
    step 31 - lrate 0.000928, wchange 0.011382, angledelta 103.2 deg
    step 32 - lrate 0.000835, wchange 0.003659, angledelta 68.0 deg
    step 33 - lrate 0.000752, wchange 0.003688, angledelta 39.2 deg
    step 34 - lrate 0.000752, wchange 0.005216, angledelta 66.1 deg
    step 35 - lrate 0.000676, wchange 0.003652, angledelta 72.1 deg
    step 36 - lrate 0.000609, wchange 0.005302, angledelta 58.4 deg
    step 37 - lrate 0.000609, wchange 0.004631, angledelta 66.1 deg
    step 38 - lrate 0.000548, wchange 0.001616, angledelta 53.2 deg
    step 39 - lrate 0.000548, wchange 0.002522, angledelta 67.4 deg
    step 40 - lrate 0.000493, wchange 0.001233, angledelta 53.6 deg
    step 41 - lrate 0.000493, wchange 0.001303, angledelta 52.8 deg
    step 42 - lrate 0.000493, wchange 0.003648, angledelta 70.5 deg
    step 43 - lrate 0.000444, wchange 0.001904, angledelta 74.2 deg
    step 44 - lrate 0.000399, wchange 0.001552, angledelta 61.6 deg
    step 45 - lrate 0.000359, wchange 0.001732, angledelta 67.3 deg
    step 46 - lrate 0.000324, wchange 0.000654, angledelta 65.0 deg
    step 47 - lrate 0.000291, wchange 0.000608, angledelta 45.2 deg
    step 48 - lrate 0.000291, wchange 0.000521, angledelta 38.6 deg
    step 49 - lrate 0.000291, wchange 0.000410, angledelta 35.5 deg
    step 50 - lrate 0.000291, wchange 0.000384, angledelta 34.1 deg
    step 51 - lrate 0.000291, wchange 0.000468, angledelta 39.1 deg
    step 52 - lrate 0.000291, wchange 0.000396, angledelta 33.6 deg
    step 53 - lrate 0.000291, wchange 0.000537, angledelta 52.5 deg
    step 54 - lrate 0.000291, wchange 0.000381, angledelta 35.1 deg
    step 55 - lrate 0.000291, wchange 0.000636, angledelta 41.2 deg
    step 56 - lrate 0.000291, wchange 0.001262, angledelta 63.0 deg
    step 57 - lrate 0.000262, wchange 0.000470, angledelta 73.7 deg
    step 58 - lrate 0.000236, wchange 0.000209, angledelta 44.9 deg
    step 59 - lrate 0.000236, wchange 0.001148, angledelta 69.0 deg
    step 60 - lrate 0.000212, wchange 0.000254, angledelta 71.8 deg
    step 61 - lrate 0.000191, wchange 0.000120, angledelta 40.5 deg
    step 62 - lrate 0.000191, wchange 0.000666, angledelta 71.6 deg
    step 63 - lrate 0.000172, wchange 0.000578, angledelta 20.9 deg
    step 64 - lrate 0.000172, wchange 0.000169, angledelta 86.8 deg
    step 65 - lrate 0.000155, wchange 0.000093, angledelta 43.6 deg
    step 66 - lrate 0.000155, wchange 0.000098, angledelta 46.0 deg
    step 67 - lrate 0.000155, wchange 0.000124, angledelta 55.2 deg
    step 68 - lrate 0.000155, wchange 0.000073, angledelta 39.2 deg
    step 69 - lrate 0.000155, wchange 0.000086, angledelta 42.9 deg
    step 70 - lrate 0.000155, wchange 0.000111, angledelta 49.6 deg
    step 71 - lrate 0.000155, wchange 0.000164, angledelta 45.2 deg
    step 72 - lrate 0.000155, wchange 0.000085, angledelta 47.1 deg
    step 73 - lrate 0.000155, wchange 0.000141, angledelta 55.7 deg
    step 74 - lrate 0.000155, wchange 0.000141, angledelta 59.3 deg
    step 75 - lrate 0.000155, wchange 0.000069, angledelta 40.7 deg
    step 76 - lrate 0.000155, wchange 0.000079, angledelta 41.7 deg
    step 77 - lrate 0.000155, wchange 0.000095, angledelta 49.0 deg
    step 78 - lrate 0.000155, wchange 0.000087, angledelta 49.2 deg
    step 79 - lrate 0.000155, wchange 0.000070, angledelta 49.6 deg
    step 80 - lrate 0.000155, wchange 0.000236, angledelta 65.5 deg
    step 81 - lrate 0.000139, wchange 0.000070, angledelta 64.0 deg
    step 82 - lrate 0.000125, wchange 0.000053, angledelta 45.3 deg
    step 83 - lrate 0.000125, wchange 0.000176, angledelta 67.1 deg
    step 84 - lrate 0.000113, wchange 0.000052, angledelta 70.1 deg
    step 85 - lrate 0.000102, wchange 0.000105, angledelta 68.5 deg
    step 86 - lrate 0.000091, wchange 0.000131, angledelta 79.2 deg
    step 87 - lrate 0.000082, wchange 0.000055, angledelta 80.0 deg
    step 88 - lrate 0.000074, wchange 0.000019, angledelta 65.9 deg
    step 89 - lrate 0.000067, wchange 0.000015, angledelta 44.0 deg
    step 90 - lrate 0.000067, wchange 0.000015, angledelta 41.7 deg
    step 91 - lrate 0.000067, wchange 0.000020, angledelta 50.2 deg
    step 92 - lrate 0.000067, wchange 0.000017, angledelta 48.5 deg
    step 93 - lrate 0.000067, wchange 0.000016, angledelta 43.6 deg
    step 94 - lrate 0.000067, wchange 0.000019, angledelta 51.4 deg
    step 95 - lrate 0.000067, wchange 0.000021, angledelta 52.2 deg
    step 96 - lrate 0.000067, wchange 0.000010, angledelta 32.4 deg
    step 97 - lrate 0.000067, wchange 0.000013, angledelta 36.7 deg
    step 98 - lrate 0.000067, wchange 0.000016, angledelta 44.9 deg
    step 99 - lrate 0.000067, wchange 0.000047, angledelta 70.0 deg
    step 100 - lrate 0.000060, wchange 0.000023, angledelta 76.6 deg
    step 101 - lrate 0.000054, wchange 0.000010, angledelta 62.8 deg
    step 102 - lrate 0.000049, wchange 0.000007, angledelta 45.1 deg
    step 103 - lrate 0.000049, wchange 0.000017, angledelta 65.4 deg
    step 104 - lrate 0.000044, wchange 0.000018, angledelta 76.8 deg
    step 105 - lrate 0.000039, wchange 0.000005, angledelta 67.9 deg
    step 106 - lrate 0.000035, wchange 0.000006, angledelta 57.9 deg
    step 107 - lrate 0.000035, wchange 0.000006, angledelta 54.1 deg
    step 108 - lrate 0.000035, wchange 0.000005, angledelta 47.8 deg
    step 109 - lrate 0.000035, wchange 0.000007, angledelta 51.3 deg
    step 110 - lrate 0.000035, wchange 0.000004, angledelta 45.2 deg
    step 111 - lrate 0.000035, wchange 0.000008, angledelta 56.4 deg
    step 112 - lrate 0.000035, wchange 0.000011, angledelta 67.0 deg
    step 113 - lrate 0.000032, wchange 0.000007, angledelta 73.2 deg
    step 114 - lrate 0.000029, wchange 0.000002, angledelta 56.9 deg
    step 115 - lrate 0.000029, wchange 0.000003, angledelta 59.6 deg
    step 116 - lrate 0.000029, wchange 0.000004, angledelta 68.1 deg
    step 117 - lrate 0.000026, wchange 0.000002, angledelta 55.4 deg
    step 118 - lrate 0.000026, wchange 0.000002, angledelta 55.7 deg
    step 119 - lrate 0.000026, wchange 0.000004, angledelta 66.6 deg
    step 120 - lrate 0.000023, wchange 0.000002, angledelta 56.7 deg
    step 121 - lrate 0.000023, wchange 0.000002, angledelta 59.5 deg
    step 122 - lrate 0.000023, wchange 0.000003, angledelta 64.8 deg
    step 123 - lrate 0.000021, wchange 0.000002, angledelta 60.5 deg
    step 124 - lrate 0.000019, wchange 0.000001, angledelta 51.3 deg
    step 125 - lrate 0.000019, wchange 0.000001, angledelta 52.8 deg
    step 126 - lrate 0.000019, wchange 0.000001, angledelta 56.4 deg
    step 127 - lrate 0.000019, wchange 0.000002, angledelta 67.5 deg
    step 128 - lrate 0.000017, wchange 0.000001, angledelta 69.1 deg
    step 129 - lrate 0.000015, wchange 0.000001, angledelta 54.0 deg
    Sorting components in descending order of mean projected variance ...
    Components not ordered by variance.

    Using skewness of the distribution to determine the sign of the components ...
    Changing sign of component 2
    Changing sign of component 3
    Changing sign of component 5
    Changing sign of component 6
    Changing sign of component 7
    Changing sign of component 8
    Changing sign of component 13
    Changing sign of component 14
    Changing sign of component 19
    Changing sign of component 20


    DONE CALCULATING GROUP ICA


    STARTING BACK RECONSTRUCTION STEP

    Using GICA Back Reconstruction Approach ...

    Back reconstructing set 1
    -done back reconstructing set 1
    -saving back reconstructed ica data for set 1 -> test1_ica_br1.mat
    Back reconstructing set 2
    -done back reconstructing set 2
    -saving back reconstructed ica data for set 2 -> test1_ica_br2.mat
    Back reconstructing set 3
    -done back reconstructing set 3
    -saving back reconstructed ica data for set 3 -> test1_ica_br3.mat
    Back reconstructing set 4
    -done back reconstructing set 4
    -saving back reconstructed ica data for set 4 -> test1_ica_br4.mat
    Back reconstructing set 5
    -done back reconstructing set 5
    -saving back reconstructed ica data for set 5 -> test1_ica_br5.mat
    Back reconstructing set 6
    -done back reconstructing set 6
    -saving back reconstructed ica data for set 6 -> test1_ica_br6.mat
    Back reconstructing set 7
    -done back reconstructing set 7
    -saving back reconstructed ica data for set 7 -> test1_ica_br7.mat
    Back reconstructing set 8
    -done back reconstructing set 8
    -saving back reconstructed ica data for set 8 -> test1_ica_br8.mat
    Back reconstructing set 9
    -done back reconstructing set 9
    -saving back reconstructed ica data for set 9 -> test1_ica_br9.mat
    Back reconstructing set 10
    -done back reconstructing set 10
    -saving back reconstructed ica data for set 10 -> test1_ica_br10.mat
    Back reconstructing set 11
    -done back reconstructing set 11
    -saving back reconstructed ica data for set 11 -> test1_ica_br11.mat


    DONE WITH BACK RECONSTRUCTION STEP


    STARTING TO SCALE COMPONENT SETS

    Computing offset using the mean component maps which will be subtracted to the subject component maps ...
    Done
    --Subject 1 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 1 session 1 in nifti format and as matlab file
    --Subject 2 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 2 session 1 in nifti format and as matlab file
    --Subject 3 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 3 session 1 in nifti format and as matlab file
    --Subject 4 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 4 session 1 in nifti format and as matlab file
    --Subject 5 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 5 session 1 in nifti format and as matlab file
    --Subject 6 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 6 session 1 in nifti format and as matlab file
    --Subject 7 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 7 session 1 in nifti format and as matlab file
    --Subject 8 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 8 session 1 in nifti format and as matlab file
    --Subject 9 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 9 session 1 in nifti format and as matlab file
    --Subject 10 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 10 session 1 in nifti format and as matlab file
    --Subject 11 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 11 session 1 in nifti format and as matlab file


    DONE SCALING COMPONENTS


    STARTING GROUP STATS STEP

    --calculating mean ica component and timecourse
    done calculating mean for session 1
    done calculating mean for different sessions
    --calculating variance and standard deviation of components
    done calculating variance and standard deviation
    --calculating tmaps
    done calculating tmaps
    ...saving group stats data...
    Comparing mean image with the aggregate ...
    Value shows how much the mean component is close w.r.t aggregate component
    The comparison value is found to be 0.9857

    Computing spectra and FNC correlations of all subjects and sessions components ...
    Timecourses will be despiked when computing FNC correlations...
    Timecourses will be filtered when computing FNC correlations using HF cutoff of 0.15 Hz ...

    ......................................
    Group ICA Error Information:

    Undefined function 'abcdchk' for input arguments of type 'double'.

    Error in ==> icatb_butter at 0
    Error in ==> icatb_butter at 0
    Error in ==> filt_data at 25
    Error in ==> icatb_filt_data at 14
    Error in ==> icatb_postprocess_timecourses at 194
    Error in ==> icatb_groupStats at 503
    Error in ==> icatb_runAnalysis at 444
    Error in ==> runAnalysis_Callback at 95
    Error in ==> gui_mainfcn at 95
    Error in ==> gift at 30
    ......................................
    Error using icatb_displayErrorMsg (line 23)

    Error in icatb_runAnalysis (line 550)
    icatb_displayErrorMsg;

    Error in gift>runAnalysis_Callback (line 95)
    icatb_runAnalysis;

    Error in gui_mainfcn (line 95)
    feval(varargin{:});

    Error in gift (line 30)
    gui_mainfcn(gui_State, varargin{:});

    Error while evaluating UIControl Callback

    gift

    gift
    Reading data from source directory C:\Users\gehan\Documents\MRI\analysis\FunImgARglobalCW ...

    The selected data folders are in the following order:
    C:\Users\gehan\Documents\MRI\analysis\FunImgARglobalCW\Sub_001
    C:\Users\gehan\Documents\MRI\analysis\FunImgARglobalCW\Sub_0010
    C:\Users\gehan\Documents\MRI\analysis\FunImgARglobalCW\Sub_0011
    C:\Users\gehan\Documents\MRI\analysis\FunImgARglobalCW\Sub_002
    C:\Users\gehan\Documents\MRI\analysis\FunImgARglobalCW\Sub_003
    C:\Users\gehan\Documents\MRI\analysis\FunImgARglobalCW\Sub_004
    C:\Users\gehan\Documents\MRI\analysis\FunImgARglobalCW\Sub_005
    C:\Users\gehan\Documents\MRI\analysis\FunImgARglobalCW\Sub_006
    C:\Users\gehan\Documents\MRI\analysis\FunImgARglobalCW\Sub_007
    C:\Users\gehan\Documents\MRI\analysis\FunImgARglobalCW\Sub_008
    C:\Users\gehan\Documents\MRI\analysis\FunImgARglobalCW\Sub_009

    Please see the text file C:\Users\gehan\Documents\MRI\New folder (9)\test1SelectedDataFolders.txt for the selected data folders in order
    Creating Mask
    Default mask includes voxels >= mean. Using first file of each subject to create default mask ...
    Done Creating Mask

    Parameters are saved in C:\Users\gehan\Documents\MRI\New folder (9)\test1_ica_parameter_info.mat

    Please run the analysis using the same parameter file

    Parameters file succesfully loaded
    Opening run analysis GUI. Please wait ...


    GETTING DATA REDUCTION PARAMETERS----------------------

    Reduction step 1 starts with 11 groups and gets reduced to 11 groups
    -New Group #1: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 30 principal components
    -New Group #2: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 30 principal components
    -New Group #3: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 30 principal components
    -New Group #4: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 30 principal components
    -New Group #5: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 30 principal components
    -New Group #6: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 30 principal components
    -New Group #7: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 30 principal components
    -New Group #8: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 30 principal components
    -New Group #9: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 30 principal components
    -New Group #10: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 30 principal components
    -New Group #11: 1 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 90 BOLD timepoints
    The new group will have a total of 90 stacked BOLD timepoints
    This group will then be reduced to 30 principal components
    Reduction step 2 starts with 11 groups and gets reduced to 1 groups
    -New Group #1: 11 groups will be concatenated to form the new group.
    Each of the to be concatenated groups is made up of 30 principal components
    The new group will have a total of 330 stacked principal components
    This group will then be reduced to 20 principal components


    END GETTING DATA REDUCTION PARAMETERS----------------------

    Checking to make sure parameters are correct...
    Checking mask
    Checking principal component parameters
    Done with parameter error check


    STARTING DATA REDUCTION (PRINCIPAL COMPONENTS ANALYSIS)

    --Extracting principal components for data reduction( time #1 )

    --Doing pca on Subject #1 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 69 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    93.9941% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #2 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 69 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    96.924% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #3 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 69 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    92.6803% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #4 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 69 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    93.774% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #5 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 69 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    96.1738% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #6 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 69 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    94.2407% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #7 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 69 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    95.9145% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #8 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 69 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    99.0648% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #9 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 69 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    96.2079% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #10 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 69 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    97.6711% of (non-zero) eigenvalues retained.

    --Doing pca on Subject #11 Session #1
    Removing mean per time point ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 69 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    94.3467% of (non-zero) eigenvalues retained.

    --Extracting principal components for data reduction( time #2 )
    Loading data-set 1 ...
    Loading data-set 2 ...
    Loading data-set 3 ...
    Loading data-set 4 ...
    Loading data-set 5 ...
    Loading data-set 6 ...
    Loading data-set 7 ...
    Loading data-set 8 ...
    Loading data-set 9 ...
    Loading data-set 10 ...
    Loading data-set 11 ...
    Using Eigen Value Decomposition ...
    Covariance matrix size is 69 ^2
    Calculating eigendecomposition
    Sorting eigenvalues
    Selecting Desired Eigenvalues
    50.7147% of (non-zero) eigenvalues retained.

    Done with data reduction( time # 2)


    ENDING DATA REDUCTION (PRINCIPAL COMPONENTS ANALYSIS)


    STARTING GROUP ICA STEP

    Using spatial ica ...

    Number of times ICA will run is 1

    Run 1 / 1

    Input data size [20,69] = 20 channels, 69 frames.
    Finding 20 ICA components using logistic ICA.
    Initial learning rate will be 0.0050071, block size 4.
    Learning rate will be multiplied by 0.9 whenever angledelta >= 60 deg.
    Training will end when wchange < 1e-06 or after 512 steps.
    Online bias adjustment will be used.
    Removing mean of each channel ...
    Not removing mean of each channel!!!
    Final training data range: -7.8309 to 5.57776
    Computing the sphering matrix...
    Starting weights are the identity matrix ...
    Sphering the data ...
    Beginning ICA training ...
    step 1 - lrate 0.005007, wchange 0.528499
    step 2 - lrate 0.005007, wchange 0.346937
    step 3 - lrate 0.005007, wchange 0.355923, angledelta 61.9 deg
    step 4 - lrate 0.004506, wchange 0.256094, angledelta 61.9 deg
    step 5 - lrate 0.004056, wchange 0.238540, angledelta 61.3 deg
    step 6 - lrate 0.003650, wchange 0.230101, angledelta 76.1 deg
    step 7 - lrate 0.003285, wchange 0.225969, angledelta 88.3 deg
    step 8 - lrate 0.002957, wchange 0.322877, angledelta 110.6 deg
    step 9 - lrate 0.002661, wchange 0.248124, angledelta 122.3 deg
    step 10 - lrate 0.002395, wchange 0.144567, angledelta 111.8 deg
    step 11 - lrate 0.002155, wchange 0.133593, angledelta 107.6 deg
    step 12 - lrate 0.001940, wchange 0.085293, angledelta 104.2 deg
    step 13 - lrate 0.001746, wchange 0.054512, angledelta 87.0 deg
    step 14 - lrate 0.001571, wchange 0.035226, angledelta 66.2 deg
    step 15 - lrate 0.001414, wchange 0.028894, angledelta 54.4 deg
    step 16 - lrate 0.001414, wchange 0.025869, angledelta 45.0 deg
    step 17 - lrate 0.001414, wchange 0.022151, angledelta 40.4 deg
    step 18 - lrate 0.001414, wchange 0.021269, angledelta 46.5 deg
    step 19 - lrate 0.001414, wchange 0.021815, angledelta 46.5 deg
    step 20 - lrate 0.001414, wchange 0.018312, angledelta 60.1 deg
    step 21 - lrate 0.001273, wchange 0.013876, angledelta 70.8 deg
    step 22 - lrate 0.001145, wchange 0.009080, angledelta 54.5 deg
    step 23 - lrate 0.001145, wchange 0.009849, angledelta 61.2 deg
    step 24 - lrate 0.001031, wchange 0.012143, angledelta 58.5 deg
    step 25 - lrate 0.001031, wchange 0.014253, angledelta 59.0 deg
    step 26 - lrate 0.001031, wchange 0.008381, angledelta 49.8 deg
    step 27 - lrate 0.001031, wchange 0.009972, angledelta 60.8 deg
    step 28 - lrate 0.000928, wchange 0.005631, angledelta 75.0 deg
    step 29 - lrate 0.000835, wchange 0.004418, angledelta 51.2 deg
    step 30 - lrate 0.000835, wchange 0.004068, angledelta 51.2 deg
    step 31 - lrate 0.000835, wchange 0.003151, angledelta 53.3 deg
    step 32 - lrate 0.000835, wchange 0.003013, angledelta 52.2 deg
    step 33 - lrate 0.000835, wchange 0.002685, angledelta 48.4 deg
    step 34 - lrate 0.000835, wchange 0.006173, angledelta 62.8 deg
    step 35 - lrate 0.000752, wchange 0.002909, angledelta 72.6 deg
    step 36 - lrate 0.000676, wchange 0.001474, angledelta 54.9 deg
    step 37 - lrate 0.000676, wchange 0.005734, angledelta 64.1 deg
    step 38 - lrate 0.000609, wchange 0.001662, angledelta 73.1 deg
    step 39 - lrate 0.000548, wchange 0.000830, angledelta 47.8 deg
    step 40 - lrate 0.000548, wchange 0.000805, angledelta 55.8 deg
    step 41 - lrate 0.000548, wchange 0.000721, angledelta 48.4 deg
    step 42 - lrate 0.000548, wchange 0.000744, angledelta 57.2 deg
    step 43 - lrate 0.000548, wchange 0.001718, angledelta 68.3 deg
    step 44 - lrate 0.000493, wchange 0.000718, angledelta 65.0 deg
    step 45 - lrate 0.000444, wchange 0.000733, angledelta 56.8 deg
    step 46 - lrate 0.000444, wchange 0.000848, angledelta 58.3 deg
    step 47 - lrate 0.000444, wchange 0.000409, angledelta 45.9 deg
    step 48 - lrate 0.000444, wchange 0.000824, angledelta 55.8 deg
    step 49 - lrate 0.000444, wchange 0.000453, angledelta 53.8 deg
    step 50 - lrate 0.000444, wchange 0.000397, angledelta 45.3 deg
    step 51 - lrate 0.000444, wchange 0.000376, angledelta 46.3 deg
    step 52 - lrate 0.000444, wchange 0.002386, angledelta 73.8 deg
    step 53 - lrate 0.000399, wchange 0.000468, angledelta 78.5 deg
    step 54 - lrate 0.000359, wchange 0.001200, angledelta 69.4 deg
    step 55 - lrate 0.000324, wchange 0.000183, angledelta 70.3 deg
    step 56 - lrate 0.000291, wchange 0.000138, angledelta 30.6 deg
    step 57 - lrate 0.000291, wchange 0.000852, angledelta 70.0 deg
    step 58 - lrate 0.000262, wchange 0.000113, angledelta 73.9 deg
    step 59 - lrate 0.000236, wchange 0.000082, angledelta 25.7 deg
    step 60 - lrate 0.000236, wchange 0.000252, angledelta 57.1 deg
    step 61 - lrate 0.000236, wchange 0.000087, angledelta 29.5 deg
    step 62 - lrate 0.000236, wchange 0.000506, angledelta 66.8 deg
    step 63 - lrate 0.000212, wchange 0.000090, angledelta 74.9 deg
    step 64 - lrate 0.000191, wchange 0.000059, angledelta 41.5 deg
    step 65 - lrate 0.000191, wchange 0.000073, angledelta 46.5 deg
    step 66 - lrate 0.000191, wchange 0.000049, angledelta 37.0 deg
    step 67 - lrate 0.000191, wchange 0.000045, angledelta 37.7 deg
    step 68 - lrate 0.000191, wchange 0.000123, angledelta 58.7 deg
    step 69 - lrate 0.000191, wchange 0.000100, angledelta 49.7 deg
    step 70 - lrate 0.000191, wchange 0.000197, angledelta 64.3 deg
    step 71 - lrate 0.000172, wchange 0.000036, angledelta 61.4 deg
    step 72 - lrate 0.000155, wchange 0.000118, angledelta 55.4 deg
    step 73 - lrate 0.000155, wchange 0.000030, angledelta 20.8 deg
    step 74 - lrate 0.000155, wchange 0.000028, angledelta 17.7 deg
    step 75 - lrate 0.000155, wchange 0.000074, angledelta 50.2 deg
    step 76 - lrate 0.000155, wchange 0.000030, angledelta 23.6 deg
    step 77 - lrate 0.000155, wchange 0.000122, angledelta 60.5 deg
    step 78 - lrate 0.000139, wchange 0.000040, angledelta 68.2 deg
    step 79 - lrate 0.000125, wchange 0.000044, angledelta 55.4 deg
    step 80 - lrate 0.000125, wchange 0.000034, angledelta 55.5 deg
    step 81 - lrate 0.000125, wchange 0.000018, angledelta 43.1 deg
    step 82 - lrate 0.000125, wchange 0.000047, angledelta 59.6 deg
    step 83 - lrate 0.000125, wchange 0.000185, angledelta 72.6 deg
    step 84 - lrate 0.000113, wchange 0.000033, angledelta 79.4 deg
    step 85 - lrate 0.000102, wchange 0.000074, angledelta 70.3 deg
    step 86 - lrate 0.000091, wchange 0.000023, angledelta 74.8 deg
    step 87 - lrate 0.000082, wchange 0.000008, angledelta 50.9 deg
    step 88 - lrate 0.000082, wchange 0.000013, angledelta 59.1 deg
    step 89 - lrate 0.000082, wchange 0.000080, angledelta 78.3 deg
    step 90 - lrate 0.000074, wchange 0.000049, angledelta 83.4 deg
    step 91 - lrate 0.000067, wchange 0.000005, angledelta 71.3 deg
    step 92 - lrate 0.000060, wchange 0.000018, angledelta 63.5 deg
    step 93 - lrate 0.000054, wchange 0.000007, angledelta 74.6 deg
    step 94 - lrate 0.000049, wchange 0.000009, angledelta 68.0 deg
    step 95 - lrate 0.000044, wchange 0.000008, angledelta 72.9 deg
    step 96 - lrate 0.000039, wchange 0.000002, angledelta 55.5 deg
    step 97 - lrate 0.000039, wchange 0.000008, angledelta 73.4 deg
    step 98 - lrate 0.000035, wchange 0.000001, angledelta 60.6 deg
    step 99 - lrate 0.000032, wchange 0.000002, angledelta 39.1 deg
    step 100 - lrate 0.000032, wchange 0.000005, angledelta 66.4 deg
    step 101 - lrate 0.000029, wchange 0.000001, angledelta 66.6 deg
    Sorting components in descending order of mean projected variance ...
    Components not ordered by variance.

    Using skewness of the distribution to determine the sign of the components ...
    Changing sign of component 1
    Changing sign of component 2
    Changing sign of component 7
    Changing sign of component 10
    Changing sign of component 11
    Changing sign of component 13
    Changing sign of component 14
    Changing sign of component 18
    Changing sign of component 19
    Changing sign of component 20


    DONE CALCULATING GROUP ICA


    STARTING BACK RECONSTRUCTION STEP

    Using GICA Back Reconstruction Approach ...

    Back reconstructing set 1
    -done back reconstructing set 1
    -saving back reconstructed ica data for set 1 -> test1_ica_br1.mat
    Back reconstructing set 2
    -done back reconstructing set 2
    -saving back reconstructed ica data for set 2 -> test1_ica_br2.mat
    Back reconstructing set 3
    -done back reconstructing set 3
    -saving back reconstructed ica data for set 3 -> test1_ica_br3.mat
    Back reconstructing set 4
    -done back reconstructing set 4
    -saving back reconstructed ica data for set 4 -> test1_ica_br4.mat
    Back reconstructing set 5
    -done back reconstructing set 5
    -saving back reconstructed ica data for set 5 -> test1_ica_br5.mat
    Back reconstructing set 6
    -done back reconstructing set 6
    -saving back reconstructed ica data for set 6 -> test1_ica_br6.mat
    Back reconstructing set 7
    -done back reconstructing set 7
    -saving back reconstructed ica data for set 7 -> test1_ica_br7.mat
    Back reconstructing set 8
    -done back reconstructing set 8
    -saving back reconstructed ica data for set 8 -> test1_ica_br8.mat
    Back reconstructing set 9
    -done back reconstructing set 9
    -saving back reconstructed ica data for set 9 -> test1_ica_br9.mat
    Back reconstructing set 10
    -done back reconstructing set 10
    -saving back reconstructed ica data for set 10 -> test1_ica_br10.mat
    Back reconstructing set 11
    -done back reconstructing set 11
    -saving back reconstructed ica data for set 11 -> test1_ica_br11.mat


    DONE WITH BACK RECONSTRUCTION STEP


    STARTING TO SCALE COMPONENT SETS

    Computing offset using the mean component maps which will be subtracted to the subject component maps ...
    Done
    --Subject 1 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 1 session 1 in nifti format and as matlab file
    --Subject 2 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 2 session 1 in nifti format and as matlab file
    --Subject 3 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 3 session 1 in nifti format and as matlab file
    --Subject 4 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 4 session 1 in nifti format and as matlab file
    --Subject 5 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 5 session 1 in nifti format and as matlab file
    --Subject 6 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 6 session 1 in nifti format and as matlab file
    --Subject 7 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 7 session 1 in nifti format and as matlab file
    --Subject 8 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 8 session 1 in nifti format and as matlab file
    --Subject 9 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 9 session 1 in nifti format and as matlab file
    --Subject 10 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 10 session 1 in nifti format and as matlab file
    --Subject 11 Session 1's Component Set
    Converting components to z-scores
    ...saving scaled ica data for subject 11 session 1 in nifti format and as matlab file


    DONE SCALING COMPONENTS


    STARTING GROUP STATS STEP

    --calculating mean ica component and timecourse
    done calculating mean for session 1
    done calculating mean for different sessions
    --calculating variance and standard deviation of components
    done calculating variance and standard deviation
    --calculating tmaps
    done calculating tmaps
    ...saving group stats data...
    Comparing mean image with the aggregate ...
    Value shows how much the mean component is close w.r.t aggregate component
    The comparison value is found to be 0.99509

    Computing spectra and FNC correlations of all subjects and sessions components ...
    Timecourses will be despiked when computing FNC correlations...
    Timecourses will be filtered when computing FNC correlations using HF cutoff of 0.15 Hz ...

    ......................................
    Group ICA Error Information:

    Undefined function 'abcdchk' for input arguments of type 'double'.

    Error in ==> icatb_butter at 0
    Error in ==> icatb_butter at 0
    Error in ==> filt_data at 25
    Error in ==> icatb_filt_data at 14
    Error in ==> icatb_postprocess_timecourses at 194
    Error in ==> icatb_groupStats at 503
    Error in ==> icatb_runAnalysis at 444
    Error in ==> runAnalysis_Callback at 95
    Error in ==> gui_mainfcn at 95
    Error in ==> gift at 30
    ......................................
    Error using icatb_displayErrorMsg (line 23)

    Error in icatb_runAnalysis (line 550)
    icatb_displayErrorMsg;

    Error in gift>runAnalysis_Callback (line 95)
    icatb_runAnalysis;

    Error in gui_mainfcn (line 95)
    feval(varargin{:});

    Error in gift (line 30)
    gui_mainfcn(gui_State, varargin{:});

    Error while evaluating UIControl Callback

    gift

     

Log in to post a comment.