During pavement quality control, numerous laboratory tests such as California Bearing Ratio (CBR), Proctor compaction test, and Plasticity Index (PI) are conducted to evaluate material performance and suitability. GB PavementMat leverages advanced AI-based models developed using artificial neural networks to accurately predict these critical properties directly from sieve analysis data. This significantly reduces laboratory testing time, cost, and delays while maintaining high reliability. The combined prediction model achieves an accuracy of 97%, while the dedicated Proctor test model reaches an accuracy of 98%, delivering fast, intelligent, and dependable pavement material assessment.
Follow GB PavementMat
Other Useful Business Software
MongoDB Atlas runs apps anywhere
MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
Rate This Project
Login To Rate This Project
User Reviews
Be the first to post a review of GB PavementMat!