Fuzzy Ecospace Modelling (FEM) is an R-based program for quantifying and comparing functional disparity, using a fuzzy set theory-based machine learning approach. FEM clusters n-dimensional matrices of functional traits (ecospace matrices – here called the Training Matrix) into functional groups and converts them into fuzzy functional groups using fuzzy discriminant analysis (Lin and Chen 2004 – see main text for more information). Following this, FEM classifies the functional entities from a second matrix (the Test Matrix) into the groups made using the Training Matrix, generating fuzzy membership values for each unit in the Test Matrix. These values are real numbers from 0 to 1, representing increasing degrees of “truth” regarding an organism’s membership in the fuzzy set (see main text). A value of 0 represents non-membership in the fuzzy set, and a value of 1 represents total membership in the fuzzy set. Values in between represent degrees of niche overlap.

Project Activity

See All Activity >

License

GNU General Public License version 3.0 (GPLv3)

Follow Fuzzy Ecospace Modelling

Fuzzy Ecospace Modelling Web Site

Other Useful Business Software
Enterprise-grade ITSM, for every business Icon
Enterprise-grade ITSM, for every business

Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity.

Freshservice is an intuitive, AI-powered platform that helps IT, operations, and business teams deliver exceptional service without the usual complexity. Automate repetitive tasks, resolve issues faster, and provide seamless support across the organization. From managing incidents and assets to driving smarter decisions, Freshservice makes it easy to stay efficient and scale with confidence.
Try it Free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of Fuzzy Ecospace Modelling!

Additional Project Details

Operating Systems

Linux, Mac, Windows

Intended Audience

Science/Research

Registered

2018-03-25