This advanced machine learning algorithm is a Michigan-style learning classifier system (LCS) developed to specialize in classification, prediction, data mining, and knowledge discovery tasks. Michigan-style LCS algorithms constitute a unique class of algorithms that distribute learned patterns over a collaborative population of of individually interpretable IF:THEN rules, allowing them to flexibly and effectively describe complex and diverse problem spaces. ExSTraCS was primarily developed to address problems in epidemiological data mining to identify complex patterns relating predictive attributes in noisy datasets to disease phenotypes of interest. ExSTraCS combines a number of recent advancements into a single algorithmic platform. It can flexibly handle (1) discrete or continuous attributes, (2) missing data, (3) balanced or imbalanced datasets, and (4) binary or many classes. A complete users guide for ExSTraCS is included. Coded in Python 2.7.

Project Samples

Project Activity

See All Activity >

License

GNU General Public License version 3.0 (GPLv3)

Follow ExSTraCS

ExSTraCS Web Site

You Might Also Like
SKUDONET Open Source Load Balancer Icon
SKUDONET Open Source Load Balancer

Take advantage of Open Source Load Balancer to elevate your business security and IT infrastructure with a custom ADC Solution.

SKUDONET ADC, operates at the application layer, efficiently distributing network load and application load across multiple servers. This not only enhances the performance of your application but also ensures that your web servers can handle more traffic seamlessly.
Rate This Project
Login To Rate This Project

User Ratings

★★★★★
★★★★
★★★
★★
0
1
0
0
0
ease 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 3 / 5
features 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 5 / 5
design 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 4 / 5
support 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 3 / 5

User Reviews

  • This is a great project and I love to see it become a full application. So far my biggest issue is running a program for continuous data sets give me an error because con.numBins is not set in the constants code. I'm not sure what this value is supposed to be, but it is used only with continuous data so discrete data sets will not have an issue running. Thanks again
Read more reviews >

Additional Project Details

Intended Audience

Financial and Insurance Industry, Science/Research, Education

Programming Language

Python

Related Categories

Python Bio-Informatics Software, Python Machine Learning Software

Registered

2014-06-21