SourceForge has been redesigned. Learn more.
Close

[d525ab]: / ccmain / fixspace.cpp  Maximize  Restore  History

Download this file

951 lines (863 with data), 32.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
/******************************************************************
* File: fixspace.cpp (Formerly fixspace.c)
* Description: Implements a pass over the page res, exploring the alternative
* spacing possibilities, trying to use context to improve the
* word spacing
* Author: Phil Cheatle
* Created: Thu Oct 21 11:38:43 BST 1993
*
* (C) Copyright 1993, Hewlett-Packard Ltd.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
**********************************************************************/
#include <ctype.h>
#include "reject.h"
#include "statistc.h"
#include "control.h"
#include "fixspace.h"
#include "genblob.h"
#include "tessvars.h"
#include "tessbox.h"
#include "secname.h"
#include "globals.h"
#include "tesseractclass.h"
#define PERFECT_WERDS 999
#define MAXSPACING 128 /*max expected spacing in pix */
namespace tesseract {
/**
* @name fix_fuzzy_spaces()
* Walk over the page finding sequences of words joined by fuzzy spaces. Extract
* them as a sublist, process the sublist to find the optimal arrangement of
* spaces then replace the sublist in the ROW_RES.
*
* @param monitor progress monitor
* @param word_count count of words in doc
* @param[out] page_res
*/
void Tesseract::fix_fuzzy_spaces(ETEXT_DESC *monitor,
inT32 word_count,
PAGE_RES *page_res) {
BLOCK_RES_IT block_res_it;
ROW_RES_IT row_res_it;
WERD_RES_IT word_res_it_from;
WERD_RES_IT word_res_it_to;
WERD_RES *word_res;
WERD_RES_LIST fuzzy_space_words;
inT16 new_length;
BOOL8 prevent_null_wd_fixsp; // DONT process blobless wds
inT32 word_index; // current word
block_res_it.set_to_list(&page_res->block_res_list);
word_index = 0;
for (block_res_it.mark_cycle_pt(); !block_res_it.cycled_list();
block_res_it.forward()) {
row_res_it.set_to_list(&block_res_it.data()->row_res_list);
for (row_res_it.mark_cycle_pt(); !row_res_it.cycled_list();
row_res_it.forward()) {
word_res_it_from.set_to_list(&row_res_it.data()->word_res_list);
while (!word_res_it_from.at_last()) {
word_res = word_res_it_from.data();
while (!word_res_it_from.at_last() &&
!(word_res->combination ||
word_res_it_from.data_relative(1)->word->flag(W_FUZZY_NON) ||
word_res_it_from.data_relative(1)->word->flag(W_FUZZY_SP))) {
fix_sp_fp_word(word_res_it_from, row_res_it.data()->row,
block_res_it.data()->block);
word_res = word_res_it_from.forward();
word_index++;
if (monitor != NULL) {
monitor->ocr_alive = TRUE;
monitor->progress = 90 + 5 * word_index / word_count;
if (monitor->deadline_exceeded() ||
(monitor->cancel != NULL &&
(*monitor->cancel)(monitor->cancel_this, stats_.dict_words)))
return;
}
}
if (!word_res_it_from.at_last()) {
word_res_it_to = word_res_it_from;
prevent_null_wd_fixsp =
word_res->word->cblob_list()->empty();
if (check_debug_pt(word_res, 60))
debug_fix_space_level.set_value(10);
word_res_it_to.forward();
word_index++;
if (monitor != NULL) {
monitor->ocr_alive = TRUE;
monitor->progress = 90 + 5 * word_index / word_count;
if (monitor->deadline_exceeded() ||
(monitor->cancel != NULL &&
(*monitor->cancel)(monitor->cancel_this, stats_.dict_words)))
return;
}
while (!word_res_it_to.at_last () &&
(word_res_it_to.data_relative(1)->word->flag(W_FUZZY_NON) ||
word_res_it_to.data_relative(1)->word->flag(W_FUZZY_SP))) {
if (check_debug_pt(word_res, 60))
debug_fix_space_level.set_value(10);
if (word_res->word->cblob_list()->empty())
prevent_null_wd_fixsp = TRUE;
word_res = word_res_it_to.forward();
}
if (check_debug_pt(word_res, 60))
debug_fix_space_level.set_value(10);
if (word_res->word->cblob_list()->empty())
prevent_null_wd_fixsp = TRUE;
if (prevent_null_wd_fixsp) {
word_res_it_from = word_res_it_to;
} else {
fuzzy_space_words.assign_to_sublist(&word_res_it_from,
&word_res_it_to);
fix_fuzzy_space_list(fuzzy_space_words,
row_res_it.data()->row,
block_res_it.data()->block);
new_length = fuzzy_space_words.length();
word_res_it_from.add_list_before(&fuzzy_space_words);
for (;
!word_res_it_from.at_last() && new_length > 0;
new_length--) {
word_res_it_from.forward();
}
}
if (test_pt)
debug_fix_space_level.set_value(0);
}
fix_sp_fp_word(word_res_it_from, row_res_it.data()->row,
block_res_it.data()->block);
// Last word in row
}
}
}
}
void Tesseract::fix_fuzzy_space_list(WERD_RES_LIST &best_perm,
ROW *row,
BLOCK* block) {
inT16 best_score;
WERD_RES_LIST current_perm;
inT16 current_score;
BOOL8 improved = FALSE;
best_score = eval_word_spacing(best_perm); // default score
dump_words(best_perm, best_score, 1, improved);
if (best_score != PERFECT_WERDS)
initialise_search(best_perm, current_perm);
while ((best_score != PERFECT_WERDS) && !current_perm.empty()) {
match_current_words(current_perm, row, block);
current_score = eval_word_spacing(current_perm);
dump_words(current_perm, current_score, 2, improved);
if (current_score > best_score) {
best_perm.clear();
best_perm.deep_copy(&current_perm, &WERD_RES::deep_copy);
best_score = current_score;
improved = TRUE;
}
if (current_score < PERFECT_WERDS)
transform_to_next_perm(current_perm);
}
dump_words(best_perm, best_score, 3, improved);
}
} // namespace tesseract
void initialise_search(WERD_RES_LIST &src_list, WERD_RES_LIST &new_list) {
WERD_RES_IT src_it(&src_list);
WERD_RES_IT new_it(&new_list);
WERD_RES *src_wd;
WERD_RES *new_wd;
for (src_it.mark_cycle_pt(); !src_it.cycled_list(); src_it.forward()) {
src_wd = src_it.data();
if (!src_wd->combination) {
new_wd = new WERD_RES(*src_wd);
new_wd->combination = FALSE;
new_wd->part_of_combo = FALSE;
new_it.add_after_then_move(new_wd);
}
}
}
namespace tesseract {
void Tesseract::match_current_words(WERD_RES_LIST &words, ROW *row,
BLOCK* block) {
WERD_RES_IT word_it(&words);
WERD_RES *word;
// Since we are not using PAGE_RES to iterate over words, we need to update
// prev_word_best_choice_ before calling classify_word_pass2().
prev_word_best_choice_ = NULL;
for (word_it.mark_cycle_pt(); !word_it.cycled_list(); word_it.forward()) {
word = word_it.data();
if ((!word->part_of_combo) && (word->box_word == NULL)) {
classify_word_and_language(&Tesseract::classify_word_pass2,
block, row, word);
}
prev_word_best_choice_ = word->best_choice;
}
}
/**
* @name eval_word_spacing()
* The basic measure is the number of characters in contextually confirmed
* words. (I.e the word is done)
* If all words are contextually confirmed the evaluation is deemed perfect.
*
* Some fiddles are done to handle "1"s as these are VERY frequent causes of
* fuzzy spaces. The problem with the basic measure is that "561 63" would score
* the same as "56163", though given our knowledge that the space is fuzzy, and
* that there is a "1" next to the fuzzy space, we need to ensure that "56163"
* is prefered.
*
* The solution is to NOT COUNT the score of any word which has a digit at one
* end and a "1Il" as the character the other side of the space.
*
* Conversly, any character next to a "1" within a word is counted as a positive
* score. Thus "561 63" would score 4 (3 chars in a numeric word plus 1 side of
* the "1" joined). "56163" would score 7 - all chars in a numeric word + 2
* sides of a "1" joined.
*
* The joined 1 rule is applied to any word REGARDLESS of contextual
* confirmation. Thus "PS7a71 3/7a" scores 1 (neither word is contexutally
* confirmed. The only score is from the joined 1. "PS7a713/7a" scores 2.
*
*/
inT16 Tesseract::eval_word_spacing(WERD_RES_LIST &word_res_list) {
WERD_RES_IT word_res_it(&word_res_list);
inT16 total_score = 0;
inT16 word_count = 0;
inT16 done_word_count = 0;
inT16 word_len;
inT16 i;
inT16 offset;
WERD_RES *word; // current word
inT16 prev_word_score = 0;
BOOL8 prev_word_done = FALSE;
BOOL8 prev_char_1 = FALSE; // prev ch a "1/I/l"?
BOOL8 prev_char_digit = FALSE; // prev ch 2..9 or 0
BOOL8 current_char_1 = FALSE;
BOOL8 current_word_ok_so_far;
STRING punct_chars = "!\"`',.:;";
BOOL8 prev_char_punct = FALSE;
BOOL8 current_char_punct = FALSE;
BOOL8 word_done = FALSE;
do {
word = word_res_it.data();
word_done = fixspace_thinks_word_done(word);
word_count++;
if (word->tess_failed) {
total_score += prev_word_score;
if (prev_word_done)
done_word_count++;
prev_word_score = 0;
prev_char_1 = FALSE;
prev_char_digit = FALSE;
prev_word_done = FALSE;
} else {
/*
Can we add the prev word score and potentially count this word?
Yes IF it didnt end in a 1 when the first char of this word is a digit
AND it didnt end in a digit when the first char of this word is a 1
*/
word_len = word->reject_map.length();
current_word_ok_so_far = FALSE;
if (!((prev_char_1 && digit_or_numeric_punct(word, 0)) ||
(prev_char_digit && (
(word_done &&
word->best_choice->unichar_lengths().string()[0] == 1 &&
word->best_choice->unichar_string()[0] == '1') ||
(!word_done && STRING(conflict_set_I_l_1).contains(
word->best_choice->unichar_string()[0])))))) {
total_score += prev_word_score;
if (prev_word_done)
done_word_count++;
current_word_ok_so_far = word_done;
}
if (current_word_ok_so_far) {
prev_word_done = TRUE;
prev_word_score = word_len;
} else {
prev_word_done = FALSE;
prev_word_score = 0;
}
/* Add 1 to total score for every joined 1 regardless of context and
rejtn */
for (i = 0, prev_char_1 = FALSE; i < word_len; i++) {
current_char_1 = word->best_choice->unichar_string()[i] == '1';
if (prev_char_1 || (current_char_1 && (i > 0)))
total_score++;
prev_char_1 = current_char_1;
}
/* Add 1 to total score for every joined punctuation regardless of context
and rejtn */
if (tessedit_prefer_joined_punct) {
for (i = 0, offset = 0, prev_char_punct = FALSE; i < word_len;
offset += word->best_choice->unichar_lengths()[i++]) {
current_char_punct =
punct_chars.contains(word->best_choice->unichar_string()[offset]);
if (prev_char_punct || (current_char_punct && i > 0))
total_score++;
prev_char_punct = current_char_punct;
}
}
prev_char_digit = digit_or_numeric_punct(word, word_len - 1);
for (i = 0, offset = 0; i < word_len - 1;
offset += word->best_choice->unichar_lengths()[i++]);
prev_char_1 =
((word_done && (word->best_choice->unichar_string()[offset] == '1'))
|| (!word_done && STRING(conflict_set_I_l_1).contains(
word->best_choice->unichar_string()[offset])));
}
/* Find next word */
do {
word_res_it.forward();
} while (word_res_it.data()->part_of_combo);
} while (!word_res_it.at_first());
total_score += prev_word_score;
if (prev_word_done)
done_word_count++;
if (done_word_count == word_count)
return PERFECT_WERDS;
else
return total_score;
}
BOOL8 Tesseract::digit_or_numeric_punct(WERD_RES *word, int char_position) {
int i;
int offset;
for (i = 0, offset = 0; i < char_position;
offset += word->best_choice->unichar_lengths()[i++]);
return (
word->uch_set->get_isdigit(
word->best_choice->unichar_string().string() + offset,
word->best_choice->unichar_lengths()[i]) ||
(word->best_choice->permuter() == NUMBER_PERM &&
STRING(numeric_punctuation).contains(
word->best_choice->unichar_string().string()[offset])));
}
} // namespace tesseract
/**
* @name transform_to_next_perm()
* Examines the current word list to find the smallest word gap size. Then walks
* the word list closing any gaps of this size by either inserted new
* combination words, or extending existing ones.
*
* The routine COULD be limited to stop it building words longer than N blobs.
*
* If there are no more gaps then it DELETES the entire list and returns the
* empty list to cause termination.
*/
void transform_to_next_perm(WERD_RES_LIST &words) {
WERD_RES_IT word_it(&words);
WERD_RES_IT prev_word_it(&words);
WERD_RES *word;
WERD_RES *prev_word;
WERD_RES *combo;
WERD *copy_word;
inT16 prev_right = -MAX_INT16;
TBOX box;
inT16 gap;
inT16 min_gap = MAX_INT16;
for (word_it.mark_cycle_pt(); !word_it.cycled_list(); word_it.forward()) {
word = word_it.data();
if (!word->part_of_combo) {
box = word->word->bounding_box();
if (prev_right > -MAX_INT16) {
gap = box.left() - prev_right;
if (gap < min_gap)
min_gap = gap;
}
prev_right = box.right();
}
}
if (min_gap < MAX_INT16) {
prev_right = -MAX_INT16; // back to start
word_it.set_to_list(&words);
// Note: we can't use cycle_pt due to inserted combos at start of list.
for (; (prev_right == -MAX_INT16) || !word_it.at_first();
word_it.forward()) {
word = word_it.data();
if (!word->part_of_combo) {
box = word->word->bounding_box();
if (prev_right > -MAX_INT16) {
gap = box.left() - prev_right;
if (gap <= min_gap) {
prev_word = prev_word_it.data();
if (prev_word->combination) {
combo = prev_word;
} else {
/* Make a new combination and insert before
* the first word being joined. */
copy_word = new WERD;
*copy_word = *(prev_word->word);
// deep copy
combo = new WERD_RES(copy_word);
combo->combination = TRUE;
combo->x_height = prev_word->x_height;
prev_word->part_of_combo = TRUE;
prev_word_it.add_before_then_move(combo);
}
combo->word->set_flag(W_EOL, word->word->flag(W_EOL));
if (word->combination) {
combo->word->join_on(word->word);
// Move blobs to combo
// old combo no longer needed
delete word_it.extract();
} else {
// Copy current wd to combo
combo->copy_on(word);
word->part_of_combo = TRUE;
}
combo->done = FALSE;
combo->ClearResults();
} else {
prev_word_it = word_it; // catch up
}
}
prev_right = box.right();
}
}
} else {
words.clear(); // signal termination
}
}
namespace tesseract {
void Tesseract::dump_words(WERD_RES_LIST &perm, inT16 score,
inT16 mode, BOOL8 improved) {
WERD_RES_IT word_res_it(&perm);
if (debug_fix_space_level > 0) {
if (mode == 1) {
stats_.dump_words_str = "";
for (word_res_it.mark_cycle_pt(); !word_res_it.cycled_list();
word_res_it.forward()) {
if (!word_res_it.data()->part_of_combo) {
stats_.dump_words_str +=
word_res_it.data()->best_choice->unichar_string();
stats_.dump_words_str += ' ';
}
}
}
#ifndef SECURE_NAMES
if (debug_fix_space_level > 1) {
switch (mode) {
case 1:
tprintf("EXTRACTED (%d): \"", score);
break;
case 2:
tprintf("TESTED (%d): \"", score);
break;
case 3:
tprintf("RETURNED (%d): \"", score);
break;
}
for (word_res_it.mark_cycle_pt(); !word_res_it.cycled_list();
word_res_it.forward()) {
if (!word_res_it.data()->part_of_combo) {
tprintf("%s/%1d ",
word_res_it.data()->best_choice->unichar_string().string(),
(int)word_res_it.data()->best_choice->permuter());
}
}
tprintf("\"\n");
} else if (improved) {
tprintf("FIX SPACING \"%s\" => \"", stats_.dump_words_str.string());
for (word_res_it.mark_cycle_pt(); !word_res_it.cycled_list();
word_res_it.forward()) {
if (!word_res_it.data()->part_of_combo) {
tprintf("%s/%1d ",
word_res_it.data()->best_choice->unichar_string().string(),
(int)word_res_it.data()->best_choice->permuter());
}
}
tprintf("\"\n");
}
#endif
}
}
/**
* @name uniformly_spaced()
* Return true if one of the following are true:
* - All inter-char gaps are the same width
* - The largest gap is no larger than twice the mean/median of the others
* - The largest gap is < normalised_max_nonspace
* **** REMEMBER - WE'RE NOW WORKING WITH A BLN WERD !!!
*/
BOOL8 Tesseract::uniformly_spaced(WERD_RES *word) {
TBOX box;
inT16 prev_right = -MAX_INT16;
inT16 gap;
inT16 max_gap = -MAX_INT16;
inT16 max_gap_count = 0;
STATS gap_stats(0, MAXSPACING);
BOOL8 result;
const ROW *row = word->denorm.row();
float max_non_space;
float normalised_max_nonspace;
inT16 i = 0;
inT16 offset = 0;
STRING punct_chars = "\"`',.:;";
for (TBLOB* blob = word->rebuild_word->blobs; blob != NULL;
blob = blob->next) {
box = blob->bounding_box();
if ((prev_right > -MAX_INT16) &&
(!punct_chars.contains(
word->best_choice->unichar_string()
[offset - word->best_choice->unichar_lengths()[i - 1]]) &&
!punct_chars.contains(
word->best_choice->unichar_string()[offset]))) {
gap = box.left() - prev_right;
if (gap < max_gap) {
gap_stats.add(gap, 1);
} else if (gap == max_gap) {
max_gap_count++;
} else {
if (max_gap_count > 0)
gap_stats.add(max_gap, max_gap_count);
max_gap = gap;
max_gap_count = 1;
}
}
prev_right = box.right();
offset += word->best_choice->unichar_lengths()[i++];
}
max_non_space = (row->space() + 3 * row->kern()) / 4;
normalised_max_nonspace = max_non_space * kBlnXHeight / row->x_height();
result = (
gap_stats.get_total() == 0 ||
max_gap <= normalised_max_nonspace ||
(gap_stats.get_total() > 2 && max_gap <= 2 * gap_stats.median()) ||
(gap_stats.get_total() <= 2 && max_gap <= 2 * gap_stats.mean()));
#ifndef SECURE_NAMES
if ((debug_fix_space_level > 1)) {
if (result) {
tprintf(
"ACCEPT SPACING FOR: \"%s\" norm_maxnon = %f max=%d maxcount=%d "
"total=%d mean=%f median=%f\n",
word->best_choice->unichar_string().string(), normalised_max_nonspace,
max_gap, max_gap_count, gap_stats.get_total(), gap_stats.mean(),
gap_stats.median());
} else {
tprintf(
"REJECT SPACING FOR: \"%s\" norm_maxnon = %f max=%d maxcount=%d "
"total=%d mean=%f median=%f\n",
word->best_choice->unichar_string().string(), normalised_max_nonspace,
max_gap, max_gap_count, gap_stats.get_total(), gap_stats.mean(),
gap_stats.median());
}
}
#endif
return result;
}
BOOL8 Tesseract::fixspace_thinks_word_done(WERD_RES *word) {
if (word->done)
return TRUE;
/*
Use all the standard pass 2 conditions for mode 5 in set_done() in
reject.c BUT DONT REJECT IF THE WERD IS AMBIGUOUS - FOR SPACING WE DONT
CARE WHETHER WE HAVE of/at on/an etc.
*/
if (fixsp_done_mode > 0 &&
(word->tess_accepted ||
(fixsp_done_mode == 2 && word->reject_map.reject_count() == 0) ||
fixsp_done_mode == 3) &&
(strchr(word->best_choice->unichar_string().string(), ' ') == NULL) &&
((word->best_choice->permuter() == SYSTEM_DAWG_PERM) ||
(word->best_choice->permuter() == FREQ_DAWG_PERM) ||
(word->best_choice->permuter() == USER_DAWG_PERM) ||
(word->best_choice->permuter() == NUMBER_PERM))) {
return TRUE;
} else {
return FALSE;
}
}
/**
* @name fix_sp_fp_word()
* Test the current word to see if it can be split by deleting noise blobs. If
* so, do the business.
* Return with the iterator pointing to the same place if the word is unchanged,
* or the last of the replacement words.
*/
void Tesseract::fix_sp_fp_word(WERD_RES_IT &word_res_it, ROW *row,
BLOCK* block) {
WERD_RES *word_res;
WERD_RES_LIST sub_word_list;
WERD_RES_IT sub_word_list_it(&sub_word_list);
inT16 blob_index;
inT16 new_length;
float junk;
word_res = word_res_it.data();
if (word_res->word->flag(W_REP_CHAR) ||
word_res->combination ||
word_res->part_of_combo ||
!word_res->word->flag(W_DONT_CHOP))
return;
blob_index = worst_noise_blob(word_res, &junk);
if (blob_index < 0)
return;
if (debug_fix_space_level > 1) {
tprintf("FP fixspace working on \"%s\"\n",
word_res->best_choice->unichar_string().string());
}
word_res->word->rej_cblob_list()->sort(c_blob_comparator);
sub_word_list_it.add_after_stay_put(word_res_it.extract());
fix_noisy_space_list(sub_word_list, row, block);
new_length = sub_word_list.length();
word_res_it.add_list_before(&sub_word_list);
for (; !word_res_it.at_last() && new_length > 1; new_length--) {
word_res_it.forward();
}
}
void Tesseract::fix_noisy_space_list(WERD_RES_LIST &best_perm, ROW *row,
BLOCK* block) {
inT16 best_score;
WERD_RES_IT best_perm_it(&best_perm);
WERD_RES_LIST current_perm;
WERD_RES_IT current_perm_it(&current_perm);
WERD_RES *old_word_res;
WERD_RES *new_word_res;
inT16 current_score;
BOOL8 improved = FALSE;
best_score = fp_eval_word_spacing(best_perm); // default score
dump_words(best_perm, best_score, 1, improved);
new_word_res = new WERD_RES;
old_word_res = best_perm_it.data();
old_word_res->combination = TRUE; // Kludge to force deep copy
*new_word_res = *old_word_res; // deep copy
old_word_res->combination = FALSE; // Undo kludge
current_perm_it.add_to_end(new_word_res);
break_noisiest_blob_word(current_perm);
while (best_score != PERFECT_WERDS && !current_perm.empty()) {
match_current_words(current_perm, row, block);
current_score = fp_eval_word_spacing(current_perm);
dump_words(current_perm, current_score, 2, improved);
if (current_score > best_score) {
best_perm.clear();
best_perm.deep_copy(&current_perm, &WERD_RES::deep_copy);
best_score = current_score;
improved = TRUE;
}
if (current_score < PERFECT_WERDS) {
break_noisiest_blob_word(current_perm);
}
}
dump_words(best_perm, best_score, 3, improved);
}
/**
* break_noisiest_blob_word()
* Find the word with the blob which looks like the worst noise.
* Break the word into two, deleting the noise blob.
*/
void Tesseract::break_noisiest_blob_word(WERD_RES_LIST &words) {
WERD_RES_IT word_it(&words);
WERD_RES_IT worst_word_it;
float worst_noise_score = 9999;
int worst_blob_index = -1; // Noisiest blob of noisiest wd
int blob_index; // of wds noisiest blob
float noise_score; // of wds noisiest blob
WERD_RES *word_res;
C_BLOB_IT blob_it;
C_BLOB_IT rej_cblob_it;
C_BLOB_LIST new_blob_list;
C_BLOB_IT new_blob_it;
C_BLOB_IT new_rej_cblob_it;
WERD *new_word;
inT16 start_of_noise_blob;
inT16 i;
for (word_it.mark_cycle_pt(); !word_it.cycled_list(); word_it.forward()) {
blob_index = worst_noise_blob(word_it.data(), &noise_score);
if (blob_index > -1 && worst_noise_score > noise_score) {
worst_noise_score = noise_score;
worst_blob_index = blob_index;
worst_word_it = word_it;
}
}
if (worst_blob_index < 0) {
words.clear(); // signal termination
return;
}
/* Now split the worst_word_it */
word_res = worst_word_it.data();
/* Move blobs before noise blob to a new bloblist */
new_blob_it.set_to_list(&new_blob_list);
blob_it.set_to_list(word_res->word->cblob_list());
for (i = 0; i < worst_blob_index; i++, blob_it.forward()) {
new_blob_it.add_after_then_move(blob_it.extract());
}
start_of_noise_blob = blob_it.data()->bounding_box().left();
delete blob_it.extract(); // throw out noise blob
new_word = new WERD(&new_blob_list, word_res->word);
new_word->set_flag(W_EOL, FALSE);
word_res->word->set_flag(W_BOL, FALSE);
word_res->word->set_blanks(1); // After break
new_rej_cblob_it.set_to_list(new_word->rej_cblob_list());
rej_cblob_it.set_to_list(word_res->word->rej_cblob_list());
for (;
(!rej_cblob_it.empty() &&
(rej_cblob_it.data()->bounding_box().left() < start_of_noise_blob));
rej_cblob_it.forward()) {
new_rej_cblob_it.add_after_then_move(rej_cblob_it.extract());
}
WERD_RES* new_word_res = new WERD_RES(new_word);
new_word_res->combination = TRUE;
worst_word_it.add_before_then_move(new_word_res);
word_res->ClearResults();
}
inT16 Tesseract::worst_noise_blob(WERD_RES *word_res,
float *worst_noise_score) {
float noise_score[512];
int i;
int min_noise_blob; // 1st contender
int max_noise_blob; // last contender
int non_noise_count;
int worst_noise_blob; // Worst blob
float small_limit = kBlnXHeight * fixsp_small_outlines_size;
float non_noise_limit = kBlnXHeight * 0.8;
if (word_res->rebuild_word == NULL)
return -1; // Can't handle cube words.
TBLOB* blob = word_res->rebuild_word->blobs;
// Normalised.
int blob_count = word_res->box_word->length();
ASSERT_HOST(blob_count <= 512);
if (blob_count < 5)
return -1; // too short to split
/* Get the noise scores for all blobs */
#ifndef SECURE_NAMES
if (debug_fix_space_level > 5)
tprintf("FP fixspace Noise metrics for \"%s\": ",
word_res->best_choice->unichar_string().string());
#endif
for (i = 0; i < blob_count && blob != NULL; i++, blob = blob->next) {
if (word_res->reject_map[i].accepted())
noise_score[i] = non_noise_limit;
else
noise_score[i] = blob_noise_score(blob);
if (debug_fix_space_level > 5)
tprintf("%1.1f ", noise_score[i]);
}
if (debug_fix_space_level > 5)
tprintf("\n");
/* Now find the worst one which is far enough away from the end of the word */
non_noise_count = 0;
for (i = 0; i < blob_count && non_noise_count < fixsp_non_noise_limit; i++) {
if (noise_score[i] >= non_noise_limit) {
non_noise_count++;
}
}
if (non_noise_count < fixsp_non_noise_limit)
return -1;
min_noise_blob = i;
non_noise_count = 0;
for (i = blob_count - 1; i >= 0 && non_noise_count < fixsp_non_noise_limit;
i--) {
if (noise_score[i] >= non_noise_limit) {
non_noise_count++;
}
}
if (non_noise_count < fixsp_non_noise_limit)
return -1;
max_noise_blob = i;
if (min_noise_blob > max_noise_blob)
return -1;
*worst_noise_score = small_limit;
worst_noise_blob = -1;
for (i = min_noise_blob; i <= max_noise_blob; i++) {
if (noise_score[i] < *worst_noise_score) {
worst_noise_blob = i;
*worst_noise_score = noise_score[i];
}
}
return worst_noise_blob;
}
float Tesseract::blob_noise_score(TBLOB *blob) {
TBOX box; // BB of outline
inT16 outline_count = 0;
inT16 max_dimension;
inT16 largest_outline_dimension = 0;
for (TESSLINE* ol = blob->outlines; ol != NULL; ol= ol->next) {
outline_count++;
box = ol->bounding_box();
if (box.height() > box.width()) {
max_dimension = box.height();
} else {
max_dimension = box.width();
}
if (largest_outline_dimension < max_dimension)
largest_outline_dimension = max_dimension;
}
if (outline_count > 5) {
// penalise LOTS of blobs
largest_outline_dimension *= 2;
}
box = blob->bounding_box();
if (box.bottom() > kBlnBaselineOffset * 4 ||
box.top() < kBlnBaselineOffset / 2) {
// Lax blob is if high or low
largest_outline_dimension /= 2;
}
return largest_outline_dimension;
}
} // namespace tesseract
void fixspace_dbg(WERD_RES *word) {
TBOX box = word->word->bounding_box();
BOOL8 show_map_detail = FALSE;
inT16 i;
box.print();
tprintf(" \"%s\" ", word->best_choice->unichar_string().string());
tprintf("Blob count: %d (word); %d/%d (rebuild word)\n",
word->word->cblob_list()->length(),
word->rebuild_word->NumBlobs(),
word->box_word->length());
word->reject_map.print(debug_fp);
tprintf("\n");
if (show_map_detail) {
tprintf("\"%s\"\n", word->best_choice->unichar_string().string());
for (i = 0; word->best_choice->unichar_string()[i] != '\0'; i++) {
tprintf("**** \"%c\" ****\n", word->best_choice->unichar_string()[i]);
word->reject_map[i].full_print(debug_fp);
}
}
tprintf("Tess Accepted: %s\n", word->tess_accepted ? "TRUE" : "FALSE");
tprintf("Done flag: %s\n\n", word->done ? "TRUE" : "FALSE");
}
/**
* fp_eval_word_spacing()
* Evaluation function for fixed pitch word lists.
*
* Basically, count the number of "nice" characters - those which are in tess
* acceptable words or in dict words and are not rejected.
* Penalise any potential noise chars
*/
namespace tesseract {
inT16 Tesseract::fp_eval_word_spacing(WERD_RES_LIST &word_res_list) {
WERD_RES_IT word_it(&word_res_list);
WERD_RES *word;
inT16 word_length;
inT16 score = 0;
inT16 i;
float small_limit = kBlnXHeight * fixsp_small_outlines_size;
for (word_it.mark_cycle_pt(); !word_it.cycled_list(); word_it.forward()) {
word = word_it.data();
if (word->rebuild_word == NULL)
continue; // Can't handle cube words.
word_length = word->reject_map.length();
if (word->done ||
word->tess_accepted ||
word->best_choice->permuter() == SYSTEM_DAWG_PERM ||
word->best_choice->permuter() == FREQ_DAWG_PERM ||
word->best_choice->permuter() == USER_DAWG_PERM ||
safe_dict_word(word) > 0) {
TBLOB* blob = word->rebuild_word->blobs;
UNICHAR_ID space = word->uch_set->unichar_to_id(" ");
for (i = 0; i < word->best_choice->length() && blob != NULL;
++i, blob = blob->next) {
if (word->best_choice->unichar_id(i) == space ||
blob_noise_score(blob) < small_limit) {
score -= 1; // penalise possibly erroneous non-space
} else if (word->reject_map[i].accepted()) {
score++;
}
}
}
}
if (score < 0)
score = 0;
return score;
}
} // namespace tesseract