Hi all,

I am trying to learn to calculate the magnetic ground state geometry of a system. For example I am testing a well known non-colinear system, IrMn. I have randomized the spins in the Mn and I wish to see if the system returns to the stable anti ferromagnetic state. Here is the input that I am using:

tasks

0

2

! Groundstate calculation from scratch

! Geometric optimization

spinpol

.true.

xctype

3

!lsda

mixtype

2

! fairly large number of empty states required for magnetic cases

nempty

10

swidth

0.001

scale

10.1153

avec

0.866025 -0.5 0.0

0.0 1.0 0.0

0.0 0.0 1.2247795

sppath

'./'

atoms

2

'Ir.in'

3

0.666666 0.666666 0.0 0.0 0.0 0.0

0.0 0.0 .66664 0.0 0.0 0.0

0.33333 0.33333 0.33332 0.0 0.0 0.0

'Mn.in'

9

0.16667 0.16667 0.0 0.0 1.0 0.0

0.16667 0.66667 0.0 0.5 0.0 -0.5

0.66667 0.16667 0.0 -1.0 0.0 0.0

0.0 0.5 0.66664 0.0 0.0 -1.0

0.5 0.0 0.66664 0.555564444 -0.666666 0.0

0.5 0.5 0.66664 1.0 0.0 0.0

0.33333 0.83333 0.33332 -1.0 0.0 0.0

0.83333 0.33332 0.33332 0.5 -0.866025 0.0

0.83333 0.83333 0.33332 0.5 0.0 0.866025

! the large magnetic local field on Ni is halved at every iteration

! this speeds up the convergence of magnetic calculations

reducebf

0.5

ngridk

4 4 4

vkloff

0 0 0