You can subscribe to this list here.
1999 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}
(115) 

2000 
_{Jan}
(143) 
_{Feb}
(177) 
_{Mar}
(390) 
_{Apr}
(285) 
_{May}
(316) 
_{Jun}
(241) 
_{Jul}
(303) 
_{Aug}
(504) 
_{Sep}
(322) 
_{Oct}
(368) 
_{Nov}
(398) 
_{Dec}
(474) 
2001 
_{Jan}
(734) 
_{Feb}
(712) 
_{Mar}
(736) 
_{Apr}
(358) 
_{May}
(403) 
_{Jun}
(317) 
_{Jul}
(286) 
_{Aug}
(299) 
_{Sep}
(304) 
_{Oct}
(398) 
_{Nov}
(169) 
_{Dec}
(313) 
2002 
_{Jan}
(406) 
_{Feb}
(506) 
_{Mar}
(520) 
_{Apr}
(629) 
_{May}
(714) 
_{Jun}
(711) 
_{Jul}
(761) 
_{Aug}
(665) 
_{Sep}
(542) 
_{Oct}
(713) 
_{Nov}
(641) 
_{Dec}
(639) 
2003 
_{Jan}
(468) 
_{Feb}
(748) 
_{Mar}
(781) 
_{Apr}
(812) 
_{May}
(789) 
_{Jun}
(731) 
_{Jul}
(567) 
_{Aug}
(579) 
_{Sep}
(624) 
_{Oct}
(647) 
_{Nov}
(387) 
_{Dec}
(422) 
2004 
_{Jan}
(592) 
_{Feb}
(630) 
_{Mar}
(514) 
_{Apr}
(457) 
_{May}
(647) 
_{Jun}
(388) 
_{Jul}
(276) 
_{Aug}
(528) 
_{Sep}
(840) 
_{Oct}
(831) 
_{Nov}
(350) 
_{Dec}
(458) 
2005 
_{Jan}
(584) 
_{Feb}
(654) 
_{Mar}
(706) 
_{Apr}
(229) 
_{May}
(411) 
_{Jun}
(594) 
_{Jul}
(341) 
_{Aug}
(435) 
_{Sep}
(251) 
_{Oct}
(297) 
_{Nov}
(196) 
_{Dec}
(286) 
2006 
_{Jan}
(295) 
_{Feb}
(378) 
_{Mar}
(300) 
_{Apr}
(204) 
_{May}
(241) 
_{Jun}
(316) 
_{Jul}
(256) 
_{Aug}
(346) 
_{Sep}
(338) 
_{Oct}
(352) 
_{Nov}
(288) 
_{Dec}
(272) 
2007 
_{Jan}
(194) 
_{Feb}
(242) 
_{Mar}
(329) 
_{Apr}
(357) 
_{May}
(254) 
_{Jun}
(309) 
_{Jul}
(291) 
_{Aug}
(370) 
_{Sep}
(279) 
_{Oct}
(336) 
_{Nov}
(357) 
_{Dec}
(465) 
2008 
_{Jan}
(396) 
_{Feb}
(370) 
_{Mar}
(407) 
_{Apr}
(350) 
_{May}
(337) 
_{Jun}
(339) 
_{Jul}
(352) 
_{Aug}
(314) 
_{Sep}
(338) 
_{Oct}
(299) 
_{Nov}
(279) 
_{Dec}
(365) 
2009 
_{Jan}
(596) 
_{Feb}
(601) 
_{Mar}
(588) 
_{Apr}
(542) 
_{May}
(731) 
_{Jun}
(701) 
_{Jul}
(673) 
_{Aug}
(1050) 
_{Sep}
(740) 
_{Oct}
(750) 
_{Nov}
(774) 
_{Dec}
(1044) 
2010 
_{Jan}
(835) 
_{Feb}
(1215) 
_{Mar}
(1249) 
_{Apr}
(485) 
_{May}
(138) 
_{Jun}
(164) 
_{Jul}
(143) 
_{Aug}
(148) 
_{Sep}
(102) 
_{Oct}
(121) 
_{Nov}
(74) 
_{Dec}
(83) 
2011 
_{Jan}
(131) 
_{Feb}
(200) 
_{Mar}
(122) 
_{Apr}
(111) 
_{May}
(125) 
_{Jun}
(6) 
_{Jul}

_{Aug}

_{Sep}
(1) 
_{Oct}
(6) 
_{Nov}
(1) 
_{Dec}
(4) 
2012 
_{Jan}

_{Feb}
(4) 
_{Mar}
(2) 
_{Apr}
(3) 
_{May}

_{Jun}

_{Jul}

_{Aug}
(6) 
_{Sep}
(2) 
_{Oct}
(2) 
_{Nov}

_{Dec}

2013 
_{Jan}
(4) 
_{Feb}
(1) 
_{Mar}

_{Apr}

_{May}

_{Jun}

_{Jul}
(1) 
_{Aug}
(2) 
_{Sep}

_{Oct}
(6) 
_{Nov}
(15) 
_{Dec}

2014 
_{Jan}

_{Feb}
(1) 
_{Mar}

_{Apr}
(1) 
_{May}
(1) 
_{Jun}

_{Jul}

_{Aug}

_{Sep}
(1) 
_{Oct}

_{Nov}

_{Dec}

2015 
_{Jan}
(6) 
_{Feb}
(10) 
_{Mar}
(1) 
_{Apr}

_{May}

_{Jun}

_{Jul}

_{Aug}
(3) 
_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 





1
(5) 
2
(5) 
3
(13) 
4
(5) 
5
(5) 
6
(7) 
7
(5) 
8
(9) 
9
(1) 
10
(4) 
11
(6) 
12
(5) 
13
(1) 
14
(9) 
15
(6) 
16
(1) 
17
(1) 
18
(1) 
19
(5) 
20
(7) 
21
(10) 
22
(5) 
23
(14) 
24
(12) 
25
(21) 
26
(20) 
27
(36) 
28
(23) 



From: Rune Petersen <rune@me...>  20070217 16:57:57

Roland Scheidegger wrote: > Roland Scheidegger wrote: >> Rune Petersen wrote: >> Also, the comments for SCS seem a bit off. That's a pity, because >> without comments I can't really see what the code does at first sight >> :). Looks like quite a few extra instructions though, are you sure >> not more could be shared for calculating both sin and cos? > I've looked a bit closer (this is an interesting optimization > problem...) and I think it should be doable with fewer instructions, > though ultimately I needed 2 temps instead of 1 (I don't think it's much > of a problem, 32 is plenty, PS2.0 only exposes 12). > > Ok the equation was: > Q (4/pi x  4/pi^2 x^2) + P (4/pi x  4/pi^2 x^2)^2 > > Simplified to: > y = B * x + C * x * abs(x) > y = P * (y * abs(y)  y) + y > > const0: B,C,pi,P > const1: 0.5pi, 0.75, 1/(2pi), 2.0pi > > That's what I came up with with pseudocode: > //should be 5 slots (I guess it might generate 6 due to force sameslot, > //but that needs fixing elewhere) > > //cos is even: cos(x) = cos(x). So using simple trigofu > //we get sin(neg(abs(x)) + pi/2)) = cos(x), no comparison needed and all > //values for sine stay inside [pi,pi] ([pi/2, pi/2], actually) > //hope it's ok to use neg+abs simultaneously? > temp.z = add(neg(abs(src)), const1.x) > temp.w = mul(src, C) > > //temp.xy = B*x, C*x (cos), temp.w = C * x, temp2.w = B * x (sin) > temp.xy = mul(temp.z, BC) > temp2.w = mul(src, B) > > //do cos in alpha slot not sin due to restricted swizzling > //sin y = B * x + C * x * abs(x) > temp2.z = mad(temp.w, abs(src), temp2.w) > //cos > temp2.w = mad(temp.y, abs(temp.z), temp.x) > > temp.xy = mad(temp2.wzy, abs(temp2.wzy), neg(temp2.wzy)) > // now temp.x holds y * abs(y)  y for cos, temp.y same for sin > > dest.xy = mad(temp.xy, P, temp2.wzy) > > range reduction for cos: > x = (x/(2*PI))+0.75 > x = frac(x) > x = (x*2*PI)PI > > sin: > x = (x/(2*PI))+HALF > x = frac(x) > x = (x*2*PI)PI > > Isn't that an elegant solution :) There may be any number of bugs, of > course... > I have attached a patch that implements your solution. looks fine, and it uses 6 slots until I teach emit_arith() how to pack instructions. Rune Petersen 