Privacy-preserving data publishing addresses the problem of disclosing sensitive data when mining for useful information. Among existing privacy models, epsilon-differential privacy provides one of the strongest privacy guarantees and has no assumptions about an adversary's background knowledge. All the existing solutions that ensure epsilon-differential privacy handle the problem of disclosing relational and set-valued data in a privacy preserving manner separately. We developed an algorithm that considers both relational and set-valued data in differentially private disclosure of healthcare data.
Categories
Machine LearningLicense
Creative Commons Attribution LicenseFollow DiffGen
Other Useful Business Software
Get Avast Free Antivirus with 24/7 AI-powered online scam detection
Award-winning antivirus protection, as well as protection against online scams, dangerous Wi-Fi connections, hacked accounts, and ransomware. It includes Avast Assistant, your built-in AI partner, which gives you help with suspicious online messages, offers, and more.
Rate This Project
Login To Rate This Project
User Reviews
Be the first to post a review of DiffGen!