Last modified 4 weeks ago
Control Parameters for Minimizer
max_threads
- maximal number of threads to start
proportional_stop | absolute_stop | absolute_score | absolute_iter | absolute_time
- type of stopping criterion and the value of error
stop_count
- number of steps for stopping
population_size
- number of members of the population
recombination_strategy = de_3_exp_rand | de_3_bin_rand | de_3_exp_rand_T | de_3_bin_rand_T | simple | de_3_bin | de_3_exp | de_3_exp_T | de_3_bin_T
recombination_weight
- scaling factor, 0 means adaptation
recombination_prob
- probability, 0 means adaptation
recombination_gamma
es_lambda
- number of individuals to exchange between branches.
es_cutoff
es_kind
- with what to substitute: 0 - best, 1 - less better
mean_cost
noglobal_eps
- small or big cube in parameter space, 0, -1 - big and initial guess is ignored.
substeps
* 0 - use limits, -1 - do not perturb, 0.1 - use vecinity
substieps
* 0 - use limits, -1 - do not perturb, 0.1 - use vecinity
ca_flag
* 0 - use space for the best, 1 - distribute equaly
logdepth
- type of transform for parameters with box constraints
gamma_init
- parameter for constraints transform
roundoff_error
seed
- seed for pseudo random numbers
step_parameter
- the scaling coefficient for gradient step.
step_decrement
- the coefficient to decrease the gradient step if the previous one wasn't successful.
derivative_step
- the parameter to compute the derivative numerically.
number_of_trials
- number of times to decrease the gradient step before giving up.
run_before
- functions to run befor main loop
run
- functions to run in main loop with number of tau's
run_after
- functions to run after main loop
Example:
[default_settings]
max_threads=2
proportional_stop=1e-04
stop_count=15
absolute_iter=10
population_size=150
recombination_strategy=de_3_exp_rand
recombination_weight=0
recombination_prob=0
recombination_gamma=0.9
es_lambda=25
es_cutoff=3
es_kind=0
mean_cost=0
noglobal_eps=0
substeps=0.005
substieps=0
ca_flag=1
logdepth=2
transform=tanh
gamma_init=1.0
precision=16
keep_order=1
roundoff_error=1e-06
seed=62534198
run_before=initcancel;optpost;optposteval;
run=gcadeep;5;gacdeep;1;gdeep;1;edeep;1;sdeep;24;selde;1;dpupdate;1;checkcancel;1;substitute;2;optpost;1;optposteval;1;
run_after=optpost;optposteval;printlog;
Control Parameters for the Quality Functional
debug=0 | 1
ignore_cost=0 | 1
constrain_aggr=sum | max
penalty_aggr=sum | max
<name>=<keyword>;<keyword>;<index>;<rank>;<weight>
<weight> is the multiplier for the function value in the final value
<rank> is the value with wich the random number is compared to decide if the decrease in this function is worth
mainfunc=target;objfunc;0;1;1; - scoring function. 0 means it is the main scoring function
func01=penalty;readpenalty;1;0.45;1; - read the value of the penalty from scoring program output
func02=penalty;readpenalty;2;0.45;1;
Example:
[default_target]
debug=0
ignore_cost=0
constrain_aggr=sum
penalty_aggr=sum
mainfunc=target;objfunc;0;1;0;
cbd_pen_em=penalty;readpenalty;1;2;1;
cbd_pen_r1=penalty;readpenalty;2;2;1;
cbd_pen_r3=penalty;readpenalty;3;2;0;
cbd_pen_r5=penalty;readpenalty;4;2;0;
cbd_pen_r7=penalty;readpenalty;5;2;0;
cbd_pen_r8=penalty;readpenalty;6;2;0;