[ctypes-commit] ctypes/source/libffi/src/s390 ffi.c,NONE,1.1.2.1 ffitarget.h,NONE,1.1.2.1 sysv.S,NON
Brought to you by:
theller
From: Thomas H. <th...@us...> - 2006-01-31 19:44:52
|
Update of /cvsroot/ctypes/ctypes/source/libffi/src/s390 In directory sc8-pr-cvs1.sourceforge.net:/tmp/cvs-serv14582/source/libffi/src/s390 Added Files: Tag: branch_1_0 ffi.c ffitarget.h sysv.S Log Message: Integrated a patch from Hye-Shik Chang (perky). He wrote (http://mail.python.org/pipermail/python-dev/2006-January/060199.html): I did some work to make ctypes+libffi compacter and liberal. http://openlook.org/svnpublic/ctypes-compactffi/ (snv) I removed sources/gcc and put sources/libffi copied from gcc 4.0.2. And removed all automake-related build processes and integrated them info setup.py. There's still aclocal.m4 in sources/libffi. But it is just identical to libffi's acinclude.m4 which looks liberal. --- NEW FILE: sysv.S --- /* ----------------------------------------------------------------------- sysv.S - Copyright (c) 2000 Software AG S390 Foreign Function Interface Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the ``Software''), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL CYGNUS SOLUTIONS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------- */ #define LIBFFI_ASM #include <fficonfig.h> #include <ffi.h> #ifndef __s390x__ .text # r2: cif->bytes # r3: &ecif # r4: ffi_prep_args # r5: ret_type # r6: ecif.rvalue # ov: fn # This assumes we are using gas. .globl ffi_call_SYSV .type ffi_call_SYSV,%function ffi_call_SYSV: .LFB1: stm %r6,%r15,24(%r15) # Save registers .LCFI0: basr %r13,0 # Set up base register .Lbase: lr %r11,%r15 # Set up frame pointer .LCFI1: sr %r15,%r2 ahi %r15,-96-48 # Allocate stack lr %r8,%r6 # Save ecif.rvalue sr %r9,%r9 ic %r9,.Ltable-.Lbase(%r13,%r5) # Load epilog address l %r7,96(%r11) # Load function address st %r11,0(%r15) # Set up back chain ahi %r11,-48 # Register save area .LCFI2: la %r2,96(%r15) # Save area # r3 already holds &ecif basr %r14,%r4 # Call ffi_prep_args lm %r2,%r6,0(%r11) # Load arguments ld %f0,32(%r11) ld %f2,40(%r11) la %r14,0(%r13,%r9) # Set return address br %r7 # ... and call function .LretNone: # Return void l %r4,48+56(%r11) lm %r6,%r15,48+24(%r11) br %r4 .LretFloat: l %r4,48+56(%r11) ste %f0,0(%r8) # Return float lm %r6,%r15,48+24(%r11) br %r4 .LretDouble: l %r4,48+56(%r11) std %f0,0(%r8) # Return double lm %r6,%r15,48+24(%r11) br %r4 .LretInt32: l %r4,48+56(%r11) st %r2,0(%r8) # Return int lm %r6,%r15,48+24(%r11) br %r4 .LretInt64: l %r4,48+56(%r11) stm %r2,%r3,0(%r8) # Return long long lm %r6,%r15,48+24(%r11) br %r4 .Ltable: .byte .LretNone-.Lbase # FFI390_RET_VOID .byte .LretNone-.Lbase # FFI390_RET_STRUCT .byte .LretFloat-.Lbase # FFI390_RET_FLOAT .byte .LretDouble-.Lbase # FFI390_RET_DOUBLE .byte .LretInt32-.Lbase # FFI390_RET_INT32 .byte .LretInt64-.Lbase # FFI390_RET_INT64 .LFE1: .ffi_call_SYSV_end: .size ffi_call_SYSV,.ffi_call_SYSV_end-ffi_call_SYSV .globl ffi_closure_SYSV .type ffi_closure_SYSV,%function ffi_closure_SYSV: .LFB2: stm %r12,%r15,48(%r15) # Save registers .LCFI10: basr %r13,0 # Set up base register .Lcbase: stm %r2,%r6,8(%r15) # Save arguments std %f0,64(%r15) std %f2,72(%r15) lr %r1,%r15 # Set up stack frame ahi %r15,-96 .LCFI11: l %r12,.Lchelper-.Lcbase(%r13) # Get helper function lr %r2,%r0 # Closure la %r3,8(%r1) # GPRs la %r4,64(%r1) # FPRs la %r5,96(%r1) # Overflow st %r1,0(%r15) # Set up back chain bas %r14,0(%r12,%r13) # Call helper l %r4,96+56(%r15) ld %f0,96+64(%r15) # Load return registers lm %r2,%r3,96+8(%r15) lm %r12,%r15,96+48(%r15) br %r4 .align 4 .Lchelper: .long ffi_closure_helper_SYSV-.Lcbase .LFE2: .ffi_closure_SYSV_end: .size ffi_closure_SYSV,.ffi_closure_SYSV_end-ffi_closure_SYSV .section .eh_frame,EH_FRAME_FLAGS,@progbits .Lframe1: .4byte .LECIE1-.LSCIE1 # Length of Common Information Entry .LSCIE1: .4byte 0x0 # CIE Identifier Tag .byte 0x1 # CIE Version .ascii "zR\0" # CIE Augmentation .uleb128 0x1 # CIE Code Alignment Factor .sleb128 -4 # CIE Data Alignment Factor .byte 0xe # CIE RA Column .uleb128 0x1 # Augmentation size .byte 0x1b # FDE Encoding (pcrel sdata4) .byte 0xc # DW_CFA_def_cfa .uleb128 0xf .uleb128 0x60 .align 4 .LECIE1: .LSFDE1: .4byte .LEFDE1-.LASFDE1 # FDE Length .LASFDE1: .4byte .LASFDE1-.Lframe1 # FDE CIE offset .4byte .LFB1-. # FDE initial location .4byte .LFE1-.LFB1 # FDE address range .uleb128 0x0 # Augmentation size .byte 0x4 # DW_CFA_advance_loc4 .4byte .LCFI0-.LFB1 .byte 0x8f # DW_CFA_offset, column 0xf .uleb128 0x9 .byte 0x8e # DW_CFA_offset, column 0xe .uleb128 0xa .byte 0x8d # DW_CFA_offset, column 0xd .uleb128 0xb .byte 0x8c # DW_CFA_offset, column 0xc .uleb128 0xc .byte 0x8b # DW_CFA_offset, column 0xb .uleb128 0xd .byte 0x8a # DW_CFA_offset, column 0xa .uleb128 0xe .byte 0x89 # DW_CFA_offset, column 0x9 .uleb128 0xf .byte 0x88 # DW_CFA_offset, column 0x8 .uleb128 0x10 .byte 0x87 # DW_CFA_offset, column 0x7 .uleb128 0x11 .byte 0x86 # DW_CFA_offset, column 0x6 .uleb128 0x12 .byte 0x4 # DW_CFA_advance_loc4 .4byte .LCFI1-.LCFI0 .byte 0xd # DW_CFA_def_cfa_register .uleb128 0xb .byte 0x4 # DW_CFA_advance_loc4 .4byte .LCFI2-.LCFI1 .byte 0xe # DW_CFA_def_cfa_offset .uleb128 0x90 .align 4 .LEFDE1: .LSFDE2: .4byte .LEFDE2-.LASFDE2 # FDE Length .LASFDE2: .4byte .LASFDE2-.Lframe1 # FDE CIE offset .4byte .LFB2-. # FDE initial location .4byte .LFE2-.LFB2 # FDE address range .uleb128 0x0 # Augmentation size .byte 0x4 # DW_CFA_advance_loc4 .4byte .LCFI10-.LFB2 .byte 0x8f # DW_CFA_offset, column 0xf .uleb128 0x9 .byte 0x8e # DW_CFA_offset, column 0xe .uleb128 0xa .byte 0x8d # DW_CFA_offset, column 0xd .uleb128 0xb .byte 0x8c # DW_CFA_offset, column 0xc .uleb128 0xc .byte 0x4 # DW_CFA_advance_loc4 .4byte .LCFI11-.LCFI10 .byte 0xe # DW_CFA_def_cfa_offset .uleb128 0xc0 .align 4 .LEFDE2: #else .text # r2: cif->bytes # r3: &ecif # r4: ffi_prep_args # r5: ret_type # r6: ecif.rvalue # ov: fn # This assumes we are using gas. .globl ffi_call_SYSV .type ffi_call_SYSV,%function ffi_call_SYSV: .LFB1: stmg %r6,%r15,48(%r15) # Save registers .LCFI0: larl %r13,.Lbase # Set up base register lgr %r11,%r15 # Set up frame pointer .LCFI1: sgr %r15,%r2 aghi %r15,-160-80 # Allocate stack lgr %r8,%r6 # Save ecif.rvalue llgc %r9,.Ltable-.Lbase(%r13,%r5) # Load epilog address lg %r7,160(%r11) # Load function address stg %r11,0(%r15) # Set up back chain aghi %r11,-80 # Register save area .LCFI2: la %r2,160(%r15) # Save area # r3 already holds &ecif basr %r14,%r4 # Call ffi_prep_args lmg %r2,%r6,0(%r11) # Load arguments ld %f0,48(%r11) ld %f2,56(%r11) ld %f4,64(%r11) ld %f6,72(%r11) la %r14,0(%r13,%r9) # Set return address br %r7 # ... and call function .Lbase: .LretNone: # Return void lg %r4,80+112(%r11) lmg %r6,%r15,80+48(%r11) br %r4 .LretFloat: lg %r4,80+112(%r11) ste %f0,0(%r8) # Return float lmg %r6,%r15,80+48(%r11) br %r4 .LretDouble: lg %r4,80+112(%r11) std %f0,0(%r8) # Return double lmg %r6,%r15,80+48(%r11) br %r4 .LretInt32: lg %r4,80+112(%r11) st %r2,0(%r8) # Return int lmg %r6,%r15,80+48(%r11) br %r4 .LretInt64: lg %r4,80+112(%r11) stg %r2,0(%r8) # Return long lmg %r6,%r15,80+48(%r11) br %r4 .Ltable: .byte .LretNone-.Lbase # FFI390_RET_VOID .byte .LretNone-.Lbase # FFI390_RET_STRUCT .byte .LretFloat-.Lbase # FFI390_RET_FLOAT .byte .LretDouble-.Lbase # FFI390_RET_DOUBLE .byte .LretInt32-.Lbase # FFI390_RET_INT32 .byte .LretInt64-.Lbase # FFI390_RET_INT64 .LFE1: .ffi_call_SYSV_end: .size ffi_call_SYSV,.ffi_call_SYSV_end-ffi_call_SYSV .globl ffi_closure_SYSV .type ffi_closure_SYSV,%function ffi_closure_SYSV: .LFB2: stmg %r14,%r15,112(%r15) # Save registers .LCFI10: stmg %r2,%r6,16(%r15) # Save arguments std %f0,128(%r15) std %f2,136(%r15) std %f4,144(%r15) std %f6,152(%r15) lgr %r1,%r15 # Set up stack frame aghi %r15,-160 .LCFI11: lgr %r2,%r0 # Closure la %r3,16(%r1) # GPRs la %r4,128(%r1) # FPRs la %r5,160(%r1) # Overflow stg %r1,0(%r15) # Set up back chain brasl %r14,ffi_closure_helper_SYSV # Call helper lg %r14,160+112(%r15) ld %f0,160+128(%r15) # Load return registers lg %r2,160+16(%r15) la %r15,160(%r15) br %r14 .LFE2: .ffi_closure_SYSV_end: .size ffi_closure_SYSV,.ffi_closure_SYSV_end-ffi_closure_SYSV .section .eh_frame,EH_FRAME_FLAGS,@progbits .Lframe1: .4byte .LECIE1-.LSCIE1 # Length of Common Information Entry .LSCIE1: .4byte 0x0 # CIE Identifier Tag .byte 0x1 # CIE Version .ascii "zR\0" # CIE Augmentation .uleb128 0x1 # CIE Code Alignment Factor .sleb128 -8 # CIE Data Alignment Factor .byte 0xe # CIE RA Column .uleb128 0x1 # Augmentation size .byte 0x1b # FDE Encoding (pcrel sdata4) .byte 0xc # DW_CFA_def_cfa .uleb128 0xf .uleb128 0xa0 .align 8 .LECIE1: .LSFDE1: .4byte .LEFDE1-.LASFDE1 # FDE Length .LASFDE1: .4byte .LASFDE1-.Lframe1 # FDE CIE offset .4byte .LFB1-. # FDE initial location .4byte .LFE1-.LFB1 # FDE address range .uleb128 0x0 # Augmentation size .byte 0x4 # DW_CFA_advance_loc4 .4byte .LCFI0-.LFB1 .byte 0x8f # DW_CFA_offset, column 0xf .uleb128 0x5 .byte 0x8e # DW_CFA_offset, column 0xe .uleb128 0x6 .byte 0x8d # DW_CFA_offset, column 0xd .uleb128 0x7 .byte 0x8c # DW_CFA_offset, column 0xc .uleb128 0x8 .byte 0x8b # DW_CFA_offset, column 0xb .uleb128 0x9 .byte 0x8a # DW_CFA_offset, column 0xa .uleb128 0xa .byte 0x89 # DW_CFA_offset, column 0x9 .uleb128 0xb .byte 0x88 # DW_CFA_offset, column 0x8 .uleb128 0xc .byte 0x87 # DW_CFA_offset, column 0x7 .uleb128 0xd .byte 0x86 # DW_CFA_offset, column 0x6 .uleb128 0xe .byte 0x4 # DW_CFA_advance_loc4 .4byte .LCFI1-.LCFI0 .byte 0xd # DW_CFA_def_cfa_register .uleb128 0xb .byte 0x4 # DW_CFA_advance_loc4 .4byte .LCFI2-.LCFI1 .byte 0xe # DW_CFA_def_cfa_offset .uleb128 0xf0 .align 8 .LEFDE1: .LSFDE2: .4byte .LEFDE2-.LASFDE2 # FDE Length .LASFDE2: .4byte .LASFDE2-.Lframe1 # FDE CIE offset .4byte .LFB2-. # FDE initial location .4byte .LFE2-.LFB2 # FDE address range .uleb128 0x0 # Augmentation size .byte 0x4 # DW_CFA_advance_loc4 .4byte .LCFI10-.LFB2 .byte 0x8f # DW_CFA_offset, column 0xf .uleb128 0x5 .byte 0x8e # DW_CFA_offset, column 0xe .uleb128 0x6 .byte 0x4 # DW_CFA_advance_loc4 .4byte .LCFI11-.LCFI10 .byte 0xe # DW_CFA_def_cfa_offset .uleb128 0x140 .align 8 .LEFDE2: #endif --- NEW FILE: ffi.c --- /* ----------------------------------------------------------------------- ffi.c - Copyright (c) 2000 Software AG S390 Foreign Function Interface Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the ``Software''), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------- */ /*====================================================================*/ /* Includes */ /* -------- */ /*====================================================================*/ #include <ffi.h> #include <ffi_common.h> #include <stdlib.h> #include <stdio.h> /*====================== End of Includes =============================*/ /*====================================================================*/ /* Defines */ /* ------- */ /*====================================================================*/ /* Maximum number of GPRs available for argument passing. */ #define MAX_GPRARGS 5 /* Maximum number of FPRs available for argument passing. */ #ifdef __s390x__ #define MAX_FPRARGS 4 #else #define MAX_FPRARGS 2 #endif /* Round to multiple of 16. */ #define ROUND_SIZE(size) (((size) + 15) & ~15) /* If these values change, sysv.S must be adapted! */ #define FFI390_RET_VOID 0 #define FFI390_RET_STRUCT 1 #define FFI390_RET_FLOAT 2 #define FFI390_RET_DOUBLE 3 #define FFI390_RET_INT32 4 #define FFI390_RET_INT64 5 /*===================== End of Defines ===============================*/ /*====================================================================*/ /* Prototypes */ /* ---------- */ /*====================================================================*/ static void ffi_prep_args (unsigned char *, extended_cif *); void #if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 2) __attribute__ ((visibility ("hidden"))) #endif ffi_closure_helper_SYSV (ffi_closure *, unsigned long *, unsigned long long *, unsigned long *); /*====================== End of Prototypes ===========================*/ /*====================================================================*/ /* Externals */ /* --------- */ /*====================================================================*/ extern void ffi_call_SYSV(unsigned, extended_cif *, void (*)(unsigned char *, extended_cif *), unsigned, void *, void (*fn)()); extern void ffi_closure_SYSV(void); /*====================== End of Externals ============================*/ /*====================================================================*/ /* */ /* Name - ffi_check_struct_type. */ /* */ /* Function - Determine if a structure can be passed within a */ /* general purpose or floating point register. */ /* */ /*====================================================================*/ static int ffi_check_struct_type (ffi_type *arg) { size_t size = arg->size; /* If the struct has just one element, look at that element to find out whether to consider the struct as floating point. */ while (arg->type == FFI_TYPE_STRUCT && arg->elements[0] && !arg->elements[1]) arg = arg->elements[0]; /* Structs of size 1, 2, 4, and 8 are passed in registers, just like the corresponding int/float types. */ switch (size) { case 1: return FFI_TYPE_UINT8; case 2: return FFI_TYPE_UINT16; case 4: if (arg->type == FFI_TYPE_FLOAT) return FFI_TYPE_FLOAT; else return FFI_TYPE_UINT32; case 8: if (arg->type == FFI_TYPE_DOUBLE) return FFI_TYPE_DOUBLE; else return FFI_TYPE_UINT64; default: break; } /* Other structs are passed via a pointer to the data. */ return FFI_TYPE_POINTER; } /*======================== End of Routine ============================*/ /*====================================================================*/ /* */ /* Name - ffi_prep_args. */ /* */ /* Function - Prepare parameters for call to function. */ /* */ /* ffi_prep_args is called by the assembly routine once stack space */ /* has been allocated for the function's arguments. */ /* */ /*====================================================================*/ static void ffi_prep_args (unsigned char *stack, extended_cif *ecif) { /* The stack space will be filled with those areas: FPR argument register save area (highest addresses) GPR argument register save area temporary struct copies overflow argument area (lowest addresses) We set up the following pointers: p_fpr: bottom of the FPR area (growing upwards) p_gpr: bottom of the GPR area (growing upwards) p_ov: bottom of the overflow area (growing upwards) p_struct: top of the struct copy area (growing downwards) All areas are kept aligned to twice the word size. */ int gpr_off = ecif->cif->bytes; int fpr_off = gpr_off + ROUND_SIZE (MAX_GPRARGS * sizeof (long)); unsigned long long *p_fpr = (unsigned long long *)(stack + fpr_off); unsigned long *p_gpr = (unsigned long *)(stack + gpr_off); unsigned char *p_struct = (unsigned char *)p_gpr; unsigned long *p_ov = (unsigned long *)stack; int n_fpr = 0; int n_gpr = 0; int n_ov = 0; ffi_type **ptr; void **p_argv = ecif->avalue; int i; /* If we returning a structure then we set the first parameter register to the address of where we are returning this structure. */ if (ecif->cif->flags == FFI390_RET_STRUCT) p_gpr[n_gpr++] = (unsigned long) ecif->rvalue; /* Now for the arguments. */ for (ptr = ecif->cif->arg_types, i = ecif->cif->nargs; i > 0; i--, ptr++, p_argv++) { void *arg = *p_argv; int type = (*ptr)->type; /* Check how a structure type is passed. */ if (type == FFI_TYPE_STRUCT) { type = ffi_check_struct_type (*ptr); /* If we pass the struct via pointer, copy the data. */ if (type == FFI_TYPE_POINTER) { p_struct -= ROUND_SIZE ((*ptr)->size); memcpy (p_struct, (char *)arg, (*ptr)->size); arg = &p_struct; } } /* Now handle all primitive int/pointer/float data types. */ switch (type) { case FFI_TYPE_DOUBLE: if (n_fpr < MAX_FPRARGS) p_fpr[n_fpr++] = *(unsigned long long *) arg; else #ifdef __s390x__ p_ov[n_ov++] = *(unsigned long *) arg; #else p_ov[n_ov++] = ((unsigned long *) arg)[0], p_ov[n_ov++] = ((unsigned long *) arg)[1]; #endif break; case FFI_TYPE_FLOAT: if (n_fpr < MAX_FPRARGS) p_fpr[n_fpr++] = (long long) *(unsigned int *) arg << 32; else p_ov[n_ov++] = *(unsigned int *) arg; break; case FFI_TYPE_POINTER: if (n_gpr < MAX_GPRARGS) p_gpr[n_gpr++] = (unsigned long)*(unsigned char **) arg; else p_ov[n_ov++] = (unsigned long)*(unsigned char **) arg; break; case FFI_TYPE_UINT64: case FFI_TYPE_SINT64: #ifdef __s390x__ if (n_gpr < MAX_GPRARGS) p_gpr[n_gpr++] = *(unsigned long *) arg; else p_ov[n_ov++] = *(unsigned long *) arg; #else if (n_gpr == MAX_GPRARGS-1) n_gpr = MAX_GPRARGS; if (n_gpr < MAX_GPRARGS) p_gpr[n_gpr++] = ((unsigned long *) arg)[0], p_gpr[n_gpr++] = ((unsigned long *) arg)[1]; else p_ov[n_ov++] = ((unsigned long *) arg)[0], p_ov[n_ov++] = ((unsigned long *) arg)[1]; #endif break; case FFI_TYPE_UINT32: if (n_gpr < MAX_GPRARGS) p_gpr[n_gpr++] = *(unsigned int *) arg; else p_ov[n_ov++] = *(unsigned int *) arg; break; case FFI_TYPE_INT: case FFI_TYPE_SINT32: if (n_gpr < MAX_GPRARGS) p_gpr[n_gpr++] = *(signed int *) arg; else p_ov[n_ov++] = *(signed int *) arg; break; case FFI_TYPE_UINT16: if (n_gpr < MAX_GPRARGS) p_gpr[n_gpr++] = *(unsigned short *) arg; else p_ov[n_ov++] = *(unsigned short *) arg; break; case FFI_TYPE_SINT16: if (n_gpr < MAX_GPRARGS) p_gpr[n_gpr++] = *(signed short *) arg; else p_ov[n_ov++] = *(signed short *) arg; break; case FFI_TYPE_UINT8: if (n_gpr < MAX_GPRARGS) p_gpr[n_gpr++] = *(unsigned char *) arg; else p_ov[n_ov++] = *(unsigned char *) arg; break; case FFI_TYPE_SINT8: if (n_gpr < MAX_GPRARGS) p_gpr[n_gpr++] = *(signed char *) arg; else p_ov[n_ov++] = *(signed char *) arg; break; default: FFI_ASSERT (0); break; } } } /*======================== End of Routine ============================*/ /*====================================================================*/ /* */ /* Name - ffi_prep_cif_machdep. */ /* */ /* Function - Perform machine dependent CIF processing. */ /* */ /*====================================================================*/ ffi_status ffi_prep_cif_machdep(ffi_cif *cif) { size_t struct_size = 0; int n_gpr = 0; int n_fpr = 0; int n_ov = 0; ffi_type **ptr; int i; /* Determine return value handling. */ switch (cif->rtype->type) { /* Void is easy. */ case FFI_TYPE_VOID: cif->flags = FFI390_RET_VOID; break; /* Structures are returned via a hidden pointer. */ case FFI_TYPE_STRUCT: cif->flags = FFI390_RET_STRUCT; n_gpr++; /* We need one GPR to pass the pointer. */ break; /* Floating point values are returned in fpr 0. */ case FFI_TYPE_FLOAT: cif->flags = FFI390_RET_FLOAT; break; case FFI_TYPE_DOUBLE: cif->flags = FFI390_RET_DOUBLE; break; /* Integer values are returned in gpr 2 (and gpr 3 for 64-bit values on 31-bit machines). */ case FFI_TYPE_UINT64: case FFI_TYPE_SINT64: cif->flags = FFI390_RET_INT64; break; case FFI_TYPE_POINTER: case FFI_TYPE_INT: case FFI_TYPE_UINT32: case FFI_TYPE_SINT32: case FFI_TYPE_UINT16: case FFI_TYPE_SINT16: case FFI_TYPE_UINT8: case FFI_TYPE_SINT8: /* These are to be extended to word size. */ #ifdef __s390x__ cif->flags = FFI390_RET_INT64; #else cif->flags = FFI390_RET_INT32; #endif break; default: FFI_ASSERT (0); break; } /* Now for the arguments. */ for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++) { int type = (*ptr)->type; /* Check how a structure type is passed. */ if (type == FFI_TYPE_STRUCT) { type = ffi_check_struct_type (*ptr); /* If we pass the struct via pointer, we must reserve space to copy its data for proper call-by-value semantics. */ if (type == FFI_TYPE_POINTER) struct_size += ROUND_SIZE ((*ptr)->size); } /* Now handle all primitive int/float data types. */ switch (type) { /* The first MAX_FPRARGS floating point arguments go in FPRs, the rest overflow to the stack. */ case FFI_TYPE_DOUBLE: if (n_fpr < MAX_FPRARGS) n_fpr++; else n_ov += sizeof (double) / sizeof (long); break; case FFI_TYPE_FLOAT: if (n_fpr < MAX_FPRARGS) n_fpr++; else n_ov++; break; /* On 31-bit machines, 64-bit integers are passed in GPR pairs, if one is still available, or else on the stack. If only one register is free, skip the register (it won't be used for any subsequent argument either). */ #ifndef __s390x__ case FFI_TYPE_UINT64: case FFI_TYPE_SINT64: if (n_gpr == MAX_GPRARGS-1) n_gpr = MAX_GPRARGS; if (n_gpr < MAX_GPRARGS) n_gpr += 2; else n_ov += 2; break; #endif /* Everything else is passed in GPRs (until MAX_GPRARGS have been used) or overflows to the stack. */ default: if (n_gpr < MAX_GPRARGS) n_gpr++; else n_ov++; break; } } /* Total stack space as required for overflow arguments and temporary structure copies. */ cif->bytes = ROUND_SIZE (n_ov * sizeof (long)) + struct_size; return FFI_OK; } /*======================== End of Routine ============================*/ /*====================================================================*/ /* */ /* Name - ffi_call. */ /* */ /* Function - Call the FFI routine. */ /* */ /*====================================================================*/ void ffi_call(ffi_cif *cif, void (*fn)(), void *rvalue, void **avalue) { int ret_type = cif->flags; extended_cif ecif; ecif.cif = cif; ecif.avalue = avalue; ecif.rvalue = rvalue; /* If we don't have a return value, we need to fake one. */ if (rvalue == NULL) { if (ret_type == FFI390_RET_STRUCT) ecif.rvalue = alloca (cif->rtype->size); else ret_type = FFI390_RET_VOID; } switch (cif->abi) { case FFI_SYSV: ffi_call_SYSV (cif->bytes, &ecif, ffi_prep_args, ret_type, ecif.rvalue, fn); break; default: FFI_ASSERT (0); break; } } /*======================== End of Routine ============================*/ /*====================================================================*/ /* */ /* Name - ffi_closure_helper_SYSV. */ /* */ /* Function - Call a FFI closure target function. */ /* */ /*====================================================================*/ void ffi_closure_helper_SYSV (ffi_closure *closure, unsigned long *p_gpr, unsigned long long *p_fpr, unsigned long *p_ov) { unsigned long long ret_buffer; void *rvalue = &ret_buffer; void **avalue; void **p_arg; int n_gpr = 0; int n_fpr = 0; int n_ov = 0; ffi_type **ptr; int i; /* Allocate buffer for argument list pointers. */ p_arg = avalue = alloca (closure->cif->nargs * sizeof (void *)); /* If we returning a structure, pass the structure address directly to the target function. Otherwise, have the target function store the return value to the GPR save area. */ if (closure->cif->flags == FFI390_RET_STRUCT) rvalue = (void *) p_gpr[n_gpr++]; /* Now for the arguments. */ for (ptr = closure->cif->arg_types, i = closure->cif->nargs; i > 0; i--, p_arg++, ptr++) { int deref_struct_pointer = 0; int type = (*ptr)->type; /* Check how a structure type is passed. */ if (type == FFI_TYPE_STRUCT) { type = ffi_check_struct_type (*ptr); /* If we pass the struct via pointer, remember to retrieve the pointer later. */ if (type == FFI_TYPE_POINTER) deref_struct_pointer = 1; } /* Pointers are passed like UINTs of the same size. */ if (type == FFI_TYPE_POINTER) #ifdef __s390x__ type = FFI_TYPE_UINT64; #else type = FFI_TYPE_UINT32; #endif /* Now handle all primitive int/float data types. */ switch (type) { case FFI_TYPE_DOUBLE: if (n_fpr < MAX_FPRARGS) *p_arg = &p_fpr[n_fpr++]; else *p_arg = &p_ov[n_ov], n_ov += sizeof (double) / sizeof (long); break; case FFI_TYPE_FLOAT: if (n_fpr < MAX_FPRARGS) *p_arg = &p_fpr[n_fpr++]; else *p_arg = (char *)&p_ov[n_ov++] + sizeof (long) - 4; break; case FFI_TYPE_UINT64: case FFI_TYPE_SINT64: #ifdef __s390x__ if (n_gpr < MAX_GPRARGS) *p_arg = &p_gpr[n_gpr++]; else *p_arg = &p_ov[n_ov++]; #else if (n_gpr == MAX_GPRARGS-1) n_gpr = MAX_GPRARGS; if (n_gpr < MAX_GPRARGS) *p_arg = &p_gpr[n_gpr], n_gpr += 2; else *p_arg = &p_ov[n_ov], n_ov += 2; #endif break; case FFI_TYPE_INT: case FFI_TYPE_UINT32: case FFI_TYPE_SINT32: if (n_gpr < MAX_GPRARGS) *p_arg = (char *)&p_gpr[n_gpr++] + sizeof (long) - 4; else *p_arg = (char *)&p_ov[n_ov++] + sizeof (long) - 4; break; case FFI_TYPE_UINT16: case FFI_TYPE_SINT16: if (n_gpr < MAX_GPRARGS) *p_arg = (char *)&p_gpr[n_gpr++] + sizeof (long) - 2; else *p_arg = (char *)&p_ov[n_ov++] + sizeof (long) - 2; break; case FFI_TYPE_UINT8: case FFI_TYPE_SINT8: if (n_gpr < MAX_GPRARGS) *p_arg = (char *)&p_gpr[n_gpr++] + sizeof (long) - 1; else *p_arg = (char *)&p_ov[n_ov++] + sizeof (long) - 1; break; default: FFI_ASSERT (0); break; } /* If this is a struct passed via pointer, we need to actually retrieve that pointer. */ if (deref_struct_pointer) *p_arg = *(void **)*p_arg; } /* Call the target function. */ (closure->fun) (closure->cif, rvalue, avalue, closure->user_data); /* Convert the return value. */ switch (closure->cif->rtype->type) { /* Void is easy, and so is struct. */ case FFI_TYPE_VOID: case FFI_TYPE_STRUCT: break; /* Floating point values are returned in fpr 0. */ case FFI_TYPE_FLOAT: p_fpr[0] = (long long) *(unsigned int *) rvalue << 32; break; case FFI_TYPE_DOUBLE: p_fpr[0] = *(unsigned long long *) rvalue; break; /* Integer values are returned in gpr 2 (and gpr 3 for 64-bit values on 31-bit machines). */ case FFI_TYPE_UINT64: case FFI_TYPE_SINT64: #ifdef __s390x__ p_gpr[0] = *(unsigned long *) rvalue; #else p_gpr[0] = ((unsigned long *) rvalue)[0], p_gpr[1] = ((unsigned long *) rvalue)[1]; #endif break; case FFI_TYPE_POINTER: case FFI_TYPE_UINT32: case FFI_TYPE_UINT16: case FFI_TYPE_UINT8: p_gpr[0] = *(unsigned long *) rvalue; break; case FFI_TYPE_INT: case FFI_TYPE_SINT32: case FFI_TYPE_SINT16: case FFI_TYPE_SINT8: p_gpr[0] = *(signed long *) rvalue; break; default: FFI_ASSERT (0); break; } } /*======================== End of Routine ============================*/ /*====================================================================*/ /* */ /* Name - ffi_prep_closure. */ /* */ /* Function - Prepare a FFI closure. */ /* */ /*====================================================================*/ ffi_status ffi_prep_closure (ffi_closure *closure, ffi_cif *cif, void (*fun) (ffi_cif *, void *, void **, void *), void *user_data) { FFI_ASSERT (cif->abi == FFI_SYSV); #ifndef __s390x__ *(short *)&closure->tramp [0] = 0x0d10; /* basr %r1,0 */ *(short *)&closure->tramp [2] = 0x9801; /* lm %r0,%r1,6(%r1) */ *(short *)&closure->tramp [4] = 0x1006; *(short *)&closure->tramp [6] = 0x07f1; /* br %r1 */ *(long *)&closure->tramp [8] = (long)closure; *(long *)&closure->tramp[12] = (long)&ffi_closure_SYSV; #else *(short *)&closure->tramp [0] = 0x0d10; /* basr %r1,0 */ *(short *)&closure->tramp [2] = 0xeb01; /* lmg %r0,%r1,14(%r1) */ *(short *)&closure->tramp [4] = 0x100e; *(short *)&closure->tramp [6] = 0x0004; *(short *)&closure->tramp [8] = 0x07f1; /* br %r1 */ *(long *)&closure->tramp[16] = (long)closure; *(long *)&closure->tramp[24] = (long)&ffi_closure_SYSV; #endif closure->cif = cif; closure->user_data = user_data; closure->fun = fun; return FFI_OK; } /*======================== End of Routine ============================*/ --- NEW FILE: ffitarget.h --- /* -----------------------------------------------------------------*-C-*- ffitarget.h - Copyright (c) 1996-2003 Red Hat, Inc. Target configuration macros for S390. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the ``Software''), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL CYGNUS SOLUTIONS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------- */ #ifndef LIBFFI_TARGET_H #define LIBFFI_TARGET_H #if defined (__s390x__) #define S390X #endif /* ---- System specific configurations ----------------------------------- */ #ifndef LIBFFI_ASM typedef unsigned long ffi_arg; typedef signed long ffi_sarg; typedef enum ffi_abi { FFI_FIRST_ABI = 0, FFI_SYSV, FFI_DEFAULT_ABI = FFI_SYSV, FFI_LAST_ABI = FFI_DEFAULT_ABI + 1 } ffi_abi; #endif /* ---- Definitions for closures ----------------------------------------- */ #define FFI_CLOSURES 1 #ifdef S390X #define FFI_TRAMPOLINE_SIZE 32 #else #define FFI_TRAMPOLINE_SIZE 16 #endif #define FFI_NATIVE_RAW_API 0 #endif |