From: JC LoredoOsti <josti@ba...>  20001016 21:44:48

Maybe this is not the place for this message. If so, I appologize. This weekend I got maxima to run in my alpha machine under clisp and as far as I went, it likes whatever I tryed (weel only very basic stuff, but it seems to work). It this the right place to post the patch file? thanks, j Here is a test output. CLISP 20000306 (March 2000) Maxima 5.4 Thu Mar 25 16:49:44 CST 1999 (with enhancements by W. Schelter). Licensed under the GNU Public License (see file COPYING) (C1) f(x):=x^2+y; 2 (D1) F(X) := X + Y (C2) f(2); (D2) Y + 4 (C3) ev(f(2),y:7); (D3) 11 (C4) integrate(f(x),x,1,2); 6 Y + 8 3 Y + 1 (D4)    3 3 (C5) factor(%); 3 Y + 7 (D5)  3 (C6) f(x):=sin(x)^2+1; 2 (D6) F(X) := SIN (X) + 1 (C7) f(x+1); 2 (D7) SIN (X + 1) + 1 (C8) diff(f(x),x); (D8) 2 COS(X) SIN(X) (C9) g(y,z):=f(z)+3*y; (D9) G(Y, Z) := F(Z) + 3 Y (C10) ev(g(2*y+z,0.5),y:7) (D10) 3 (Z + 14) + 1.22984884706593 (C11)h(n):=sum(i*x^i,1,0,n); I (D11) H(N) := SUM(I X , I, 0, N) (C12) h(7); 7 6 5 4 3 2 (D12) 7 X + 6 X + 5 X + 4 X + 3 X + 2 X + X (C13) functions; (D13) [F(X), G(Y, Z), H(N)] (C14) t[n](x):=ratexpand(2*x*t[n1](x)t[n2](x)); (D14) T (X) := RATEXPAND(2 X T (X)  T (X)) N N  1 N  2 (C15) t[0](x):=1; (D15) T (X) := 1 0 (C16) t[1](x):=x; (D16) T (X) := X 1 (C17) t[4](y); 4 2 (D17) 8 Y  8 Y + 1 (C18) g[n](x):=sum(ev(x),i,n,n+2); (D18) G (X) := SUM(EV(X), I, N, N + 2) N (C19) h(n,x):=sum(ev(x),i,n,n+2); (D19) H(N, X) := SUM(EV(X), I, N, N + 2) (C20) g[2](i^2); 2 (D20) 3 I (C21) h(2,i^2); (D21) 29 (C22) p[n](x):=ratsimp(1/2^n*n!)*diff((x^21)^n,x,n)); 1 2 N (D22) P (X) := RATSIMP( DIFF((X  1) , X, N)) N N 2 N! (C23)q(n,x):=ratsimp(1/2^n*n!)*diff((x^21)^n,x,n)); 1 2 N (D23) Q(N, X) := RATSIMP( DIFF((X  1) , X, N)) N 2 N! (C24) p[2]; 2 3 X  1 (D24) LAMBDA([X], ) 2 (C25) p[2](y+1); 2 3 (Y + 1)  1 (D25)  2 (C26) q(2,y); 2 3 Y  1 (D26)  2 (C27) p[2](5); (D27) 37 (C28) f[i,j](x,y):=x^i+y^j I J (D28) F (X, Y) := X + Y I, J (C29) g(fun,a,b):=PRINT(FUN," applied to ",A," and ",B," is ",FUN(A,B)); (D29) G(FUN, A, B) := PRINT(FUN, " applied to ", A, " and ", B, " is ", FUN(A, B)) (C30) G(F[2,1],SIN(%PI),2*C); 2 LAMBDA([X, Y], Y + X ) applied to 0 and 2 C is 2 C (D30) 2 C (C31) romberg(sin(y),y,1,%pi); (D31) 1.540302306426815 (C32) quit(); 