Community Detection Modularity Suite Code
Suite of community detection algorithms based on Modularity
Brought to you by:
colinmclean
File | Date | Author | Commit |
---|---|---|---|
ID_MAPS | 2014-02-24 |
![]() |
[174d09] Initial commit |
OUT | 2014-02-24 |
![]() |
[c2066e] added OUT/ dir |
testData | 2014-02-24 |
![]() |
[174d09] Initial commit |
Headers.h | 2014-02-24 |
![]() |
[174d09] Initial commit |
Helper.h | 2014-02-24 |
![]() |
[174d09] Initial commit |
Makefile | 2014-02-24 |
![]() |
[c2066e] added OUT/ dir |
README | 2014-02-24 |
![]() |
[174d09] Initial commit |
communityDetection.C | 2014-02-24 |
![]() |
[174d09] Initial commit |
edge.h | 2014-02-24 |
![]() |
[174d09] Initial commit |
eigen_sym.h | 2014-02-24 |
![]() |
[174d09] Initial commit |
ludcmp.h | 2014-02-24 |
![]() |
[174d09] Initial commit |
node.h | 2014-02-24 |
![]() |
[174d09] Initial commit |
nr3.h | 2014-02-24 |
![]() |
[174d09] Initial commit |
ran.h | 2014-02-24 |
![]() |
[174d09] Initial commit |
readInputFile.h | 2014-02-24 |
![]() |
[174d09] Initial commit |
------------------------------------------------------ ### Community Detection using Modulairty (2013) ### ### Suite of Modualrity based community detection ### ### algorithms ### ### Dr. Colin Mclean <cmclean5@staffmail.ed.ac.uk> ### ------------------------------------------------------ ---------------------------- *** TO INSTALL AND BUILD *** ---------------------------- (1) Build clustering package within a convienient location, by running the Makefile. > make This should create the executable 'run'. ---------------------------- *** TO RUN *** ---------------------------- The user can obtain help on running each of the arguments by typing the following: > ./run > ./run can take the following arguments: > -file : the network file to run > -fullNetwork : Use full network and not the lagrest component > -searchK : run algorithm through K space findKlow = 1, findKhigh = N, Kinterval = 1 > -findKlow : run algorithm through K, starting at K = findKlow > -findKhigh : run algorithm through K, ending at K = findKhigh > -Kinterval : run algorithm through K with spacing Kinterval > -searchLL : run algorithm with K = findK first calculating the solution's space LLmean > -LLiterations : run algorithm with K = findK first calculating the solution's space LLmean, using LLiterations > -LLmean : run algorithm using Log Likelihood mean = LLmean > -findK : run algorithm with K = findK for max Log Likelihood > -geneNames : can use if running -findK over a Human PPI data > ----- > EXAMPLE 1 > ----- > ./run -searchK -file testData/karate.txt > ./run -findK 4 -file testData/karate.txt > ----- > EXAMPLE 2 > ----- > ./run -findKlow 1 -findKhigh 20 -Kinterval 1 -file testData/karate.txt > ./run -searchLL -findK 4 -file testData/karate.txt > ----- Some Example data is included in the testData directory