Antimicrobial peptides (AMPs) are promising candidates in the fight against multidrug-resistant pathogens due to its broad range of activities and low toxicity. However, identification of AMPs through wet-lab experiment is still expensive and time consuming. AmPEP is an accurate computational method for AMP prediction using the random forest algorithm. The prediction model is based on the distribution patterns of amino acid properties along the sequence. Our optimal model, AmPEP with 1:3 data ratio achieved a very high accuracy of 96%, MCC of 0.9, AUC-ROC of 0.99 and Kappa statistic of 0.9. AmPEP outperforms existing methods with respect to accuracy, MCC, and AUC-ROC when tested using the benchmark datasets.
Server online at https://cbbio.online/AxPEP

Features

  • MATLAB source code
  • AmPEP datasets
  • Machine learning
  • Bioinformatics
  • Peptide sequence
  • Drug discovery

Project Samples

Project Activity

See All Activity >

Follow AmPEP and AxPEP

AmPEP and AxPEP Web Site

Other Useful Business Software
Cut Data Warehouse Costs up to 54% with BigQuery Icon
Cut Data Warehouse Costs up to 54% with BigQuery

Migrate from Snowflake, Databricks, or Redshift with free migration tools. Exabyte scale without the Exabyte price.

BigQuery delivers up to 54% lower TCO than cloud alternatives. Migrate from legacy or competing warehouses using free BigQuery Migration Service with automated SQL translation. Get serverless scale with no infrastructure to manage, compressed storage, and flexible pricing—pay per query or commit for deeper discounts. New customers get $300 in free credit.
Try BigQuery Free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of AmPEP and AxPEP!

Additional Project Details

Registered

2018-09-24