From: Foster B. <fos...@us...> - 2006-02-23 23:29:31
|
Update of /cvsroot/adobe-source/sandbox/adobe-source/adobe/documentation/sources/asl/concepts In directory sc8-pr-cvs1.sourceforge.net:/tmp/cvs-serv25760/adobe/documentation/sources/asl/concepts Modified Files: concept_lessthancomparable.dox Log Message: the state of things. We've been working to isolate static_text_t (now called label_t) but it has been slow going because we're trying to wrestle with perfecting the API and what effect that has on other components that were using label_t in a way that isn't in accordance with the new API we're trying to write. As it stands static_disabled_text_m is broken on both platforms, but everything else should be working better. Index: concept_lessthancomparable.dox =================================================================== RCS file: /cvsroot/adobe-source/sandbox/adobe-source/adobe/documentation/sources/asl/concepts/concept_lessthancomparable.dox,v retrieving revision 1.2 retrieving revision 1.3 diff -C2 -d -r1.2 -r1.3 *** concept_lessthancomparable.dox 3 Feb 2006 18:33:35 -0000 1.2 --- concept_lessthancomparable.dox 23 Feb 2006 23:28:55 -0000 1.3 *************** *** 26,31 **** \description A type is LessThanComparable if it is ordered: it must ! be possible to compare two objects of that type using <code>operator<</code>, and ! <code>operator<</code> must be a partial ordering. \refinement_of --- 26,31 ---- \description A type is LessThanComparable if it is ordered: it must ! be possible to compare two objects of that type using <code>operator< </code>, and ! <code>operator< </code> must be a partial ordering. \refinement_of *************** *** 49,60 **** transitive (that is, if <code>!(x < y) && !(y < x) && !(y < z) && !(z < y)</code> implies <code>!(x < z) && !(z < x)</code>), then it satisfies the mathematical ! definition of an equivalence relation. In this case, <code>operator<</code> is a <i>strict weak ordering</i>. \par ! If <code>operator<</code> is a strict weak ordering, and if each equivalence class ! has only a single element, then <code>operator<</code> is a <i>total ordering</i>. \valid_expressions ! <table border> <tr> <th>Name</th><th>Expression</th><th>Type requirements</th><th>Return type</th> --- 49,60 ---- transitive (that is, if <code>!(x < y) && !(y < x) && !(y < z) && !(z < y)</code> implies <code>!(x < z) && !(z < x)</code>), then it satisfies the mathematical ! definition of an equivalence relation. In this case, <code>operator< </code> is a <i>strict weak ordering</i>. \par ! If <code>operator< </code> is a strict weak ordering, and if each equivalence class ! has only a single element, then <code>operator< </code> is a <i>total ordering</i>. \valid_expressions ! <table> <tr> <th>Name</th><th>Expression</th><th>Type requirements</th><th>Return type</th> *************** *** 87,91 **** \expression_semantics ! <table border> <tr> <th>Name</th><th>Expression</th><th>Precondition</th><th>Semantics</th><th>Postcondition</th> --- 87,91 ---- \expression_semantics ! <table> <tr> <th>Name</th><th>Expression</th><th>Precondition</th><th>Semantics</th><th>Postcondition</th> *************** *** 124,128 **** \invariants ! <table border> <tr> <td valign="top">Irreflexivity</td> --- 124,128 ---- \invariants ! <table> <tr> <td valign="top">Irreflexivity</td> *************** *** 145,149 **** \notes <A name="1">[1]</A> ! Only <code>operator<</code> is fundamental; the other inequality operators are essentially syntactic sugar. \par <A name="2">[2]</A> --- 145,149 ---- \notes <A name="1">[1]</A> ! Only <code>operator< </code> is fundamental; the other inequality operators are essentially syntactic sugar. \par <A name="2">[2]</A> *************** *** 151,155 **** \par <A name="3">[3]</A> ! Because of irreflexivity and transitivity, <code>operator<</code> always satisfies the definition of a <i>partial ordering</i>. The definition of a <i>strict weak ordering</i> is stricter, and the definition of a <i>total ordering</i> is stricter still. \see_also --- 151,155 ---- \par <A name="3">[3]</A> ! Because of irreflexivity and transitivity, <code>operator< </code> always satisfies the definition of a <i>partial ordering</i>. The definition of a <i>strict weak ordering</i> is stricter, and the definition of a <i>total ordering</i> is stricter still. \see_also |