The Learning Interpretability Tool (LIT, formerly known as the Language Interpretability Tool) is a visual, interactive ML model-understanding tool that supports text, image, and tabular data. It can be run as a standalone server, or inside of notebook environments such as Colab, Jupyter, and Google Cloud Vertex AI notebooks.

Features

  • Documentation available
  • Local explanations via salience maps and rich visualization of model predictions
  • Aggregate analysis including custom metrics, slicing and binning, and visualization of embedding spaces
  • Counterfactual generation via manual edits or generator plug-ins to dynamically create and evaluate new examples
  • Side-by-side mode to compare two or more models, or one model on a pair of examples
  • Framework-agnostic and compatible with TensorFlow, PyTorch, and more

Project Samples

Project Activity

See All Activity >

Categories

Machine Learning

License

Apache License V2.0

Follow Learning Interpretability Tool

Learning Interpretability Tool Web Site

Other Useful Business Software
Easily Host LLMs and Web Apps on Cloud Run Icon
Easily Host LLMs and Web Apps on Cloud Run

Run everything from popular models with on-demand NVIDIA L4 GPUs to web apps without infrastructure management.

Run frontend and backend services, batch jobs, host LLMs, and queue processing workloads without the need to manage infrastructure. Cloud Run gives you on-demand GPU access for hosting LLMs and running real-time AI—with 5-second cold starts and automatic scale-to-zero so you only pay for actual usage. New customers get $300 in free credit to start.
Try Cloud Run Free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of Learning Interpretability Tool!

Additional Project Details

Operating Systems

Linux, Mac, Windows

Programming Language

TypeScript

Related Categories

TypeScript Machine Learning Software

Registered

2024-08-05