DFlash is an open-source framework for ultra-fast speculative decoding using a lightweight block diffusion model to draft text in parallel with a target large language model, dramatically improving inference speed without sacrificing generation quality. It acts as a “drafter” that proposes likely continuations which the main model then verifies, enabling significant throughput gains compared to traditional autoregressive decoding methods that generate token by token. This approach has been shown to deliver lossless acceleration on models like Qwen3-8B by combining block diffusion techniques with efficient batching, making it ideal for applications where latency and cost matter. The project includes support for multiple draft models, example integration code, and scripts to benchmark performance, and it is structured to work with popular model serving stacks like SGLang and the Hugging Face Transformers ecosystem.
Features
- Block diffusion based speculative decoding
- Parallel drafting for accelerated generation
- Integration examples with SGLang and Transformers
- Support for multiple draft model sizes
- Benchmarking and performance scripts
- Modular, research-friendly architecture