Search Results for "rur: a python learning environment" - Page 4

Showing 141 open source projects for "rur: a python learning environment"

View related business solutions
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 1
    WebArena

    WebArena

    Code repo for "WebArena to build Autonomous Agents

    WebArena is a realistic web environment designed for building and testing autonomous agents, providing a platform for developing web-based AI agents.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    AnyTrading

    AnyTrading

    The most simple, flexible, and comprehensive OpenAI Gym trading

    gym-anytrading is an OpenAI Gym-compatible environment designed for developing and testing reinforcement learning algorithms on trading strategies. It simulates trading environments for financial markets, including stocks and forex.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Summarize from Feedback

    Summarize from Feedback

    Code for "Learning to summarize from human feedback"

    The summarize-from-feedback repository implements the methods from the paper “Learning to Summarize from Human Feedback”. Its purpose is to train a summarization model that better aligns with human preferences by first collecting human feedback (comparisons between summaries) to train a reward model, and then fine-tuning a policy (summarizer) to maximize that learned reward. The code includes different stages: a supervised baseline (i.e. standard summarization training), the reward modeling...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    TradingGym

    TradingGym

    Trading backtesting environment for training reinforcement learning

    TradingGym is a toolkit (in Python) for creating trading and backtesting environments, especially for reinforcement learning agents, but also for simpler rule-based algorithms. It follows a design inspired by OpenAI Gym, offering various environments, data formats (tick data and OHLC), and tools to simulate trading with costs, position limits, observation windows etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    Avocado programming language

    Avocado programming language

    Avocado Polish programming language

    The Avocado language is compiled and currently allows for the creation of console applications. Work on Avocado and the integrated development environment (IDE) began on February 19, 2025. A unique feature of this language is the ability to write commands in Polish and English, compiling code into .exe format. The language is freely available for commercial and non-commercial projects. The Avocado source code is available under the MIT License on GitHub. Avocado is transpiled to Free...
    Leader badge
    Downloads: 47 This Week
    Last Update:
    See Project
  • 6
    SageMaker Experiments Python SDK

    SageMaker Experiments Python SDK

    Experiment tracking and metric logging for Amazon SageMaker notebooks

    Experiment tracking in SageMaker Training Jobs, Processing Jobs, and Notebooks. SageMaker Experiments is an AWS service for tracking machine learning Experiments. The SageMaker Experiments Python SDK is a high-level interface to this service that helps you track Experiment information using Python. Experiment tracking powers the machine learning integrated development environment Amazon SageMaker Studio. Experiment: A collection of related Trials. Add Trials to an Experiment that you wish to compare together. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    AI Explainability 360

    AI Explainability 360

    Interpretability and explainability of data and machine learning model

    The AI Explainability 360 toolkit is an open-source library that supports the interpretability and explainability of datasets and machine learning models. The AI Explainability 360 Python package includes a comprehensive set of algorithms that cover different dimensions of explanations along with proxy explainability metrics. The AI Explainability 360 interactive experience provides a gentle introduction to the concepts and capabilities by walking through an example use case for different...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    TensorFlow Ranking

    TensorFlow Ranking

    Learning to rank in TensorFlow

    ...This demo runs on a colaboratory notebook, an interactive Python environment. Using sparse features and embeddings in TF-Ranking.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    TensorFlow Documentation

    TensorFlow Documentation

    TensorFlow documentation

    An end-to-end platform for machine learning. TensorFlow makes it easy to create ML models that can run in any environment. Learn how to use the intuitive APIs through interactive code samples.
    Downloads: 0 This Week
    Last Update:
    See Project
  • AI-powered companion that automates the administrative backbone of accounting work. Icon
    AI-powered companion that automates the administrative backbone of accounting work.

    For accounting and tax firms looking for a solution to automate client onboarding and data workflows

    Soraban is the tool to get more 1040s out the door and so much more. An Intelligent Tax Workflow Solution built specifically for accounting and tax firms, designed to automate client data intake, document collection, and workflow coordination. Stop chasing clients for documents and let Soraban handle it with dynamic, customizable questionnaires that auto-remind clients via SMS, email, or voicemail. Integrated with legacy tax software, Soraban automatically enters data, applies e-signatures for IRS forms, and coordinates tax return delivery with minimal human intervention. Handling repetitive administrative duties frees professionals to focus on advisory work while improving efficiency, reducing errors, and enhancing the client experience through mobile-friendly, seamless interactions.
    Learn More
  • 10
    aqueduct LLM

    aqueduct LLM

    Aqueduct allows you to run LLM and ML workloads on any infrastructure

    Aqueduct is an MLOps framework that allows you to define and deploy machine learning and LLM workloads on any cloud infrastructure. Aqueduct is an open-source MLOps framework that allows you to write code in vanilla Python, run that code on any cloud infrastructure you'd like to use, and gain visibility into the execution and performance of your models and predictions. Aqueduct's Python native API allows you to define ML tasks in regular Python code. You can connect Aqueduct to your existing...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    AI-Agent-Host

    AI-Agent-Host

    The AI Agent Host is a module-based development environment.

    The AI Agent Host integrates several advanced technologies and offers a unique combination of features for the development of language model-driven applications. The AI Agent Host is a module-based environment designed to facilitate rapid experimentation and testing. It includes a docker-compose configuration with QuestDB, Grafana, Code-Server and Nginx. The AI Agent Host provides a seamless interface for managing and querying data, visualizing results, and coding in real-time. The AI...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    LM Human Preferences

    LM Human Preferences

    Code for the paper Fine-Tuning Language Models from Human Preferences

    lm-human-preferences is the official OpenAI codebase that implements the method from the paper Fine-Tuning Language Models from Human Preferences. Its purpose is to show how to align language models with human judgments by training a reward model from human comparisons and then fine-tuning a policy model using that reward signal. The repository includes scripts to train the reward model (learning to rank or score pairs of outputs), and to fine-tune a policy (a language model) with...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    VALL-E

    VALL-E

    PyTorch implementation of VALL-E (Zero-Shot Text-To-Speech)

    We introduce a language modeling approach for text to speech synthesis (TTS). Specifically, we train a neural codec language model (called VALL-E) using discrete codes derived from an off-the-shelf neural audio codec model, and regard TTS as a conditional language modeling task rather than continuous signal regression as in previous work. During the pre-training stage, we scale up the TTS training data to 60K hours of English speech which is hundreds of times larger than existing systems....
    Downloads: 8 This Week
    Last Update:
    See Project
  • 14
    Multi-Agent Particle Envs

    Multi-Agent Particle Envs

    Code for a multi-agent particle environment used in a paper

    Multiagent Particle Environments is a lightweight framework for simulating multi-agent reinforcement learning tasks in a continuous observation space with discrete action settings. It was originally developed by OpenAI and used in the influential paper Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. The environment provides simple particle-based worlds with simulated physics, where agents can move, communicate, and interact with each other. Scenarios are designed to...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    NeuMan

    NeuMan

    Neural Human Radiance Field from a Single Video (ECCV 2022)

    NeuMan is a reference implementation that reconstructs both an animatable human and its background scene from a single monocular video using neural radiance fields. It supports novel view and novel pose synthesis, enabling compositional results like transferring reconstructed humans into new scenes. The pipeline separates human/body and environment, learning consistent geometry and appearance to support animation. Demos showcase sequences such as dance and handshake, and the code provides...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Gym

    Gym

    Toolkit for developing and comparing reinforcement learning algorithms

    Gym by OpenAI is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents, everything from walking to playing games like Pong or Pinball. Open source interface to reinforce learning tasks. The gym library provides an easy-to-use suite of reinforcement learning tasks. Gym provides the environment, you provide the algorithm. You can write your agent using your existing numerical computation library, such as TensorFlow or Theano. It makes no...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    OmicSelector

    OmicSelector

    Feature selection and deep learning modeling for omic biomarker study

    OmicSelector is an environment, Docker-based web application, and R package for biomarker signature selection (feature selection) from high-throughput experiments and others. It was initially developed for miRNA-seq (small RNA, smRNA-seq; hence the name was miRNAselector), RNA-seq and qPCR, but can be applied for every problem where numeric features should be selected to counteract overfitting of the models. Using our tool, you can choose features, like miRNAs, with the most significant...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    PySC2

    PySC2

    StarCraft II learning environment

    PySC2 is DeepMind's Python component of the StarCraft II Learning Environment (SC2LE). It exposes Blizzard Entertainment's StarCraft II Machine Learning API as a Python RL Environment. This is a collaboration between DeepMind and Blizzard to develop StarCraft II into a rich environment for RL research. PySC2 provides an interface for RL agents to interact with StarCraft 2, getting observations and sending actions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Video Pre-Training

    Video Pre-Training

    Learning to Act by Watching Unlabeled Online Videos

    The Video PreTraining (VPT) repository provides code and model artifacts for a project where agents learn to act by watching human gameplay videos—specifically, gameplay of Minecraft—using behavioral cloning. The idea is to learn general priors of control from large-scale, unlabeled video data, and then optionally fine-tune those priors for more goal-directed behavior via environment interaction. The repository contains demonstration models of different widths, fine-tuned variants (e.g. for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    StudioGAN

    StudioGAN

    StudioGAN is a Pytorch library providing implementations of networks

    StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation. StudioGAN aims to offer an identical playground for modern GANs so that machine learning researchers can readily compare and analyze a new idea. Moreover, StudioGAN provides an unprecedented-scale benchmark for generative models. The benchmark includes results from GANs (BigGAN-Deep, StyleGAN-XL), auto-regressive models (MaskGIT,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Catalyst

    Catalyst

    Accelerated deep learning R&D

    Catalyst is a PyTorch framework for accelerated Deep Learning research and development. It allows you to write compact but full-featured Deep Learning pipelines with just a few lines of code. With Catalyst you get a full set of features including a training loop with metrics, model checkpointing and more, all without the boilerplate. Catalyst is focused on reproducibility, rapid experimentation, and codebase reuse so you can break the cycle of writing another regular train loop and make...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    Guild AI

    Guild AI

    Experiment tracking, ML developer tools

    Guild AI is an open-source experiment tracking toolkit designed to bring systematic control to machine learning workflows, enabling users to build better models faster. It automatically captures every detail of training runs as unique experiments, facilitating comprehensive tracking and analysis. Users can compare and analyze runs to deepen their understanding and incrementally improve models. Guild AI simplifies hyperparameter tuning by applying state-of-the-art algorithms through...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    The fastai book

    The fastai book

    The fastai book, published as Jupyter Notebooks

    These notebooks cover an introduction to deep learning, fastai, and PyTorch. fastai is a layered API for deep learning; for more information, see the fastai paper. These notebooks are used for a MOOC and form the basis of this book, which is currently available for purchase. It does not have the same GPL restrictions that are on this repository. The code in the notebooks and python .py files is covered by the GPL v3 license; see the LICENSE file for details. The remainder (including all...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Google Research Football

    Google Research Football

    Check out the new game server

    Google Research Football is a reinforcement learning environment simulating soccer matches. It focuses on learning complex behaviors such as team collaboration and strategy formation in competitive settings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    VQGAN-CLIP web app

    VQGAN-CLIP web app

    Local image generation using VQGAN-CLIP or CLIP guided diffusion

    VQGAN-CLIP has been in vogue for generating art using deep learning. Searching the r/deepdream subreddit for VQGAN-CLIP yields quite a number of results. Basically, VQGAN can generate pretty high-fidelity images, while CLIP can produce relevant captions for images. Combined, VQGAN-CLIP can take prompts from human input, and iterate to generate images that fit the prompts. Thanks to the generosity of creators sharing notebooks on Google Colab, the VQGAN-CLIP technique has seen widespread...
    Downloads: 0 This Week
    Last Update:
    See Project