Showing 5 open source projects for "model train design"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 1
    Real-ESRGAN GUI

    Real-ESRGAN GUI

    Cross-platform GUI for image upscaler Real-ESRGAN

    ...Real-ESRGAN can only enlarge the input image with a fixed 2-4x magnification (related to the selected model). This functionality is achieved by downsampling using a conventional scaling algorithm after multiple calls to Real-ESRGAN. Split each frame of the GIF and record the duration, zoom in one by one and then merge. Drag an image file or directory to any position in the window, and its path can be automatically set as the input.
    Downloads: 148 This Week
    Last Update:
    See Project
  • 2
    Segmentation Models

    Segmentation Models

    Segmentation models with pretrained backbones. PyTorch

    ...Preparing your data the same way as during weights pre-training may give you better results (higher metric score and faster convergence). It is not necessary in case you train the whole model, not only the decoder. Pytorch Image Models (a.k.a. timm) has a lot of pretrained models and interface which allows using these models as encoders in smp, however, not all models are supported. Input channels parameter allows you to create models, which process tensors with an arbitrary number of channels.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    TimeSformer

    TimeSformer

    The official pytorch implementation of our paper

    ...TimeSformer was influential in showing that pure transformer architectures—without convolutional backbones—can perform strongly on video classification tasks. Its flexible attention design allows experimenting with different factoring (spatial-then-temporal, joint, etc.) to trade off compute, memory, and accuracy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    YouTube-8M

    YouTube-8M

    Starter code for working with the YouTube-8M dataset

    youtube-8m is Google’s open source starter code and reference implementation for training and evaluating machine learning models on the YouTube-8M dataset, one of the largest video understanding datasets publicly released. The repository provides a complete pipeline for video-level and frame-level modeling using TensorFlow, including data reading, model training, evaluation, and inference. It was developed to support the YouTube-8M Video Understanding Challenge (hosted on Kaggle and featured at ICCV 2019), enabling researchers and practitioners to benchmark video classification models on large-scale datasets with over millions of labeled videos. The code demonstrates how to process frame-level features, train logistic and deep learning models, evaluate them using metrics like global Average Precision (gAP) and mean Average Precision (mAP), and export trained models for MediaPipe inference.
    Downloads: 8 This Week
    Last Update:
    See Project
  • D&B Hoovers is Your Sales Accelerator Icon
    D&B Hoovers is Your Sales Accelerator

    For sales teams that want to accelerate B2B sales with better data

    Speed up sales prospecting with the rich audience targeting capabilities of D&B Hoovers so you can spend more sales time closing.
    Learn More
  • 5
    PyTorch Natural Language Processing

    PyTorch Natural Language Processing

    Basic Utilities for PyTorch Natural Language Processing (NLP)

    ...PyTorch-NLP comes with pre-trained embeddings, samplers, dataset loaders, metrics, neural network modules and text encoders. It’s open-source software, released under the BSD3 license. With your batch in hand, you can use PyTorch to develop and train your model using gradient descent. For example, check out this example code for training on the Stanford Natural Language Inference (SNLI) Corpus. Now you've setup your pipeline, you may want to ensure that some functions run deterministically. Wrap any code that's random, with fork_rng and you'll be good to go. Now that you've computed your vocabulary, you may want to make use of pre-trained word vectors to set your embeddings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next