Showing 20 open source projects for "artificial intelligence algorithm"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 1
    Qdrant

    Qdrant

    Vector Database for the next generation of AI applications

    ... functionality. Implement a unique custom modification of the HNSW algorithm for the Approximate Nearest Neighbor Search. Search with a State-of-the-Art speed and apply search filters without compromising on results. Support additional payload associated with vectors. Not only stores payload but also allows filter results based on payload values. Unlike Elasticsearch post-filtering, Qdrant guarantees all relevant vectors are retrieved.
    Downloads: 36 This Week
    Last Update:
    See Project
  • 2
    Vearch

    Vearch

    A distributed system for embedding-based vector retrieval

    ... with one click. Otherwise, you can easily customize your own image, video, or text feature extraction algorithm plugin. This GIF provides a clear demonstration of the project vearch usage and its internal structure. The use of vearch is mainly divided into three steps. Firstly, create DB and Space, then import your data, and finally, you can search on your own dataset.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    txtai

    txtai

    Build AI-powered semantic search applications

    txtai executes machine-learning workflows to transform data and build AI-powered semantic search applications. Traditional search systems use keywords to find data. Semantic search applications have an understanding of natural language and identify results that have the same meaning, not necessarily the same keywords. Backed by state-of-the-art machine learning models, data is transformed into vector representations for search (also known as embeddings). Innovation is happening at a rapid...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 4
    Milvus

    Milvus

    Vector database for scalable similarity search and AI applications

    Milvus is an open-source vector database built to power embedding similarity search and AI applications. Milvus makes unstructured data search more accessible, and provides a consistent user experience regardless of the deployment environment. Milvus 2.0 is a cloud-native vector database with storage and computation separated by design. All components in this refactored version of Milvus are stateless to enhance elasticity and flexibility. Average latency measured in milliseconds on trillion...
    Downloads: 7 This Week
    Last Update:
    See Project
  • No-Nonsense Code-to-Cloud Security for Devs | Aikido Icon
    No-Nonsense Code-to-Cloud Security for Devs | Aikido

    Connect your GitHub, GitLab, Bitbucket, or Azure DevOps account to start scanning your repos for free.

    Aikido provides a unified security platform for developers, combining 12 powerful scans like SAST, DAST, and CSPM. AI-driven AutoFix and AutoTriage streamline vulnerability management, while runtime protection blocks attacks.
    Start for Free
  • 5
    pgvector

    pgvector

    Open-source vector similarity search for Postgres

    pgvector is an open-source PostgreSQL extension that equips PostgreSQL databases with vector data storage, indexing, and similarity search capabilities—ideal for embeddings-based applications like semantic search and recommendations. You can add an index to use approximate nearest neighbor search, which trades some recall for speed. Unlike typical indexes, you will see different results for queries after adding an approximate index. An HNSW index creates a multilayer graph. It has better...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 6
    Vespa

    Vespa

    The open big data serving engine

    Make AI-driven decisions using your data, in real-time. At any scale, with unbeatable performance. Vespa is a full-featured text search engine and supports both regular text search and fast approximate vector search (ANN). This makes it easy to create high-performing search applications at any scale, whether you want to use traditional techniques or a modern vector-based approach. You can even combine both approaches efficiently in the same query, something no other engine can do....
    Downloads: 5 This Week
    Last Update:
    See Project
  • 7
    Weaviate

    Weaviate

    Weaviate is a cloud-native, modular, real-time vector search engine

    Weaviate in a nutshell: Weaviate is a vector search engine and vector database. Weaviate uses machine learning to vectorize and store data, and to find answers to natural language queries. With Weaviate you can also bring your custom ML models to production scale. Weaviate in detail: Weaviate is a low-latency vector search engine with out-of-the-box support for different media types (text, images, etc.). It offers Semantic Search, Question-Answer-Extraction, Classification, Customizable...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    Cherche

    Cherche

    Neural Search

    Cherche allows the creation of efficient neural search pipelines using retrievers and pre-trained language models as rankers. Cherche's main strength is its ability to build diverse and end-to-end pipelines from lexical matching, semantic matching, and collaborative filtering-based models. Cherche provides modules dedicated to summarization and question answering. These modules are compatible with Hugging Face's pre-trained models and fully integrated into neural search pipelines. Search is...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    marqo

    marqo

    Tensor search for humans

    A tensor-based search and analytics engine that seamlessly integrates with your applications, websites, and workflows. Marqo is a versatile and robust search and analytics engine that can be integrated into any website or application. Due to horizontal scalability, Marqo provides lightning-fast query times, even with millions of documents. Marqo helps you configure deep-learning models like CLIP to pull semantic meaning from images. It can seamlessly handle image-to-image, image-to-text and...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    DocArray

    DocArray

    The data structure for multimodal data

    DocArray is a library for nested, unstructured, multimodal data in transit, including text, image, audio, video, 3D mesh, etc. It allows deep-learning engineers to efficiently process, embed, search, recommend, store, and transfer multimodal data with a Pythonic API. Door to multimodal world: super-expressive data structure for representing complicated/mixed/nested text, image, video, audio, 3D mesh data. The foundation data structure of Jina, CLIP-as-service, DALL·E Flow, DiscoArt etc. Data...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Vald

    Vald

    Vald. A Highly Scalable Distributed Vector Search Engine

    Vald is a highly scalable distributed fast approximate nearest neighbor dense vector search engine. Vald is designed and implemented based on the Cloud-Native architecture. It uses the fastest ANN Algorithm NGT to search for neighbors. Vald has automatic vector indexing and index backup, and horizontal scaling which is made for searching from billions of feature vector data. Vald is easy to use, feature-rich and highly customizable as you needed. Usually, the graph requires locking during...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    VectorDB

    VectorDB

    A Python vector database you just need, no more, no less

    vectordb is a Pythonic vector database offers a comprehensive suite of CRUD (Create, Read, Update, Delete) operations and robust scalability options, including sharding and replication. It's readily deployable in a variety of environments, from local to on-premise and cloud. vectordb delivers exactly what you need - no more, no less. It's a testament to effective Pythonic design without over-engineering, making it a lean yet powerful solution for all your needs. vectordb capitalizes on the...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Jina

    Jina

    Build cross-modal and multimodal applications on the cloud

    Jina is a framework that empowers anyone to build cross-modal and multi-modal applications on the cloud. It uplifts a PoC into a production-ready service. Jina handles the infrastructure complexity, making advanced solution engineering and cloud-native technologies accessible to every developer. Build applications that deliver fresh insights from multiple data types such as text, image, audio, video, 3D mesh, PDF with Jina AI’s DocArray. Polyglot gateway that supports gRPC, Websockets, HTTP,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    UForm

    UForm

    Multi-Modal Neural Networks for Semantic Search, based on Mid-Fusion

    UForm is a Multi-Modal Modal Inference package, designed to encode Multi-Lingual Texts, Images, and, soon, Audio, Video, and Documents, into a shared vector space! It comes with a set of homonymous pre-trained networks available on HuggingFace portal and extends the transfromers package to support Mid-fusion Models. Late-fusion models encode each modality independently, but into one shared vector space. Due to independent encoding late-fusion models are good at capturing coarse-grained...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    AnnLite

    AnnLite

    A fast embedded library for approximate nearest neighbor search

    AnnLite is a lightweight and embeddable library for fast and filterable approximate nearest neighbor search (ANNS). It allows to search for nearest neighbors in a dataset of millions of points with a Pythonic API. A simple API is designed to be used with Python. It is easy to use and intuitive to set up to production. The library uses a highly optimized approximate nearest neighbor search algorithm (HNSW) to search for nearest neighbors. The library allows you to search for nearest neighbors...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    NOW

    NOW

    No-code tool for creating a neural search solution in minutes

    One line to host them all. Bootstrap your multimodal search case in minutes. NOW gives the world access to multimodal neural search with just one command. NOW supports various formats for uploading your dataset to your search application. You may either choose a demo dataset hosted by NOW, or use your own custom dataset, to build an application. NOW can support your custom data in the form of a DocumentArray, as a path to a local folder, or S3 bucket. You can choose a demo dataset to get...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Aquila X

    Aquila X

    Easy build your personal search engine with Aquila Network

    Easy build your personal search engine with Aquila Network. Aquila X is the gateway to Aquila Network and it's applications. AquilaX is a smart bookmarking tool. You can keep your bookmarks and search through it's contents. Choose to keep all your data in a local server or in the cloud. This is an open source software and thus is auditable.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    alvd

    alvd

    alvd = A Lightweight Vald. A lightweight distributed vector search

    A lightweight distributed vector search engine based on Vald codebase. Vald is an awesome highly scalable distributed vector search engine works on Kubernetes. It has great features such as file-based backup, and metrics-based ordering of Agents. Also, Vald is highly configurable using YAML files. It works without Kubernetes, single binary (less than 30MB), easy to run (can be configured by command-line options), and consists of Agent and Server. alvd has almost the same features as Vald's...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Gamma

    Gamma

    Real time vector search engine

    Gamma is the core vector search engine of Vearch. It is a high-performance, concurrent vector search engine, and supports real-time indexing vectors and scalars without lock. Differently from the general vector search engine, Gamma can store and index a document containing scalars and vectors, providing the ability to quickly index and provides the ability of quickly indexing and filter by numeric scalar fields. The work of design and implementation of real-time indexing has been published...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Vector AI

    Vector AI

    A platform for building vector based applications

    Vector AI is a framework designed to make the process of building production-grade vector-based applications as quick and easily as possible. Create, store, manipulate, search and analyze vectors alongside json documents to power applications such as neural search, semantic search, personalized recommendations etc. Image2Vec, Audio2Vec, etc (Any data can be turned into vectors through machine learning). Store your vectors alongside documents without having to do a db lookup for metadata...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.