Showing 17 open source projects for "machine learning python"

View related business solutions
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 1
    AWS Deep Learning Containers

    AWS Deep Learning Containers

    A set of Docker images for training and serving models in TensorFlow

    ...The AWS DLCs are used in Amazon SageMaker as the default vehicles for your SageMaker jobs such as training, inference, transforms etc. They've been tested for machine learning workloads on Amazon EC2, Amazon ECS and Amazon EKS services as well. This project is licensed under the Apache-2.0 License. Ensure you have access to an AWS account i.e. setup your environment such that awscli can access your account via either an IAM user or an IAM role.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 2
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    Train machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    TensorFlow.js

    TensorFlow.js

    TensorFlow.js is a library for machine learning in JavaScript

    TensorFlow.js is a library for machine learning in JavaScript. Develop ML models in JavaScript, and use ML directly in the browser or in Node.js. Use off-the-shelf JavaScript models or convert Python TensorFlow models to run in the browser or under Node.js. Retrain pre-existing ML models using your own data. Build and train models directly in JavaScript using flexible and intuitive APIs.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    TensorFlow Model Garden

    TensorFlow Model Garden

    Models and examples built with TensorFlow

    The TensorFlow Model Garden is a repository with a number of different implementations of state-of-the-art (SOTA) models and modeling solutions for TensorFlow users. We aim to demonstrate the best practices for modeling so that TensorFlow users can take full advantage of TensorFlow for their research and product development. To improve the transparency and reproducibility of our models, training logs on TensorBoard.dev are also provided for models to the extent possible though not all models...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Business Automation Software for SMBs Icon
    Business Automation Software for SMBs

    Fed up with not having the time, money and resources to grow your business?

    The only software you need to increase cash flow, optimize resource utilization, and take control of your assets and inventory.
    Learn More
  • 5
    SageMaker Hugging Face Inference Toolkit

    SageMaker Hugging Face Inference Toolkit

    Library for serving Transformers models on Amazon SageMaker

    SageMaker Hugging Face Inference Toolkit is an open-source library for serving Transformers models on Amazon SageMaker. This library provides default pre-processing, predict and postprocessing for certain Transformers models and tasks. It utilizes the SageMaker Inference Toolkit for starting up the model server, which is responsible for handling inference requests. For the Dockerfiles used for building SageMaker Hugging Face Containers, see AWS Deep Learning Containers. The SageMaker Hugging...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    smclarify

    smclarify

    Fairness aware machine learning. Bias detection and mitigation

    Fairness Aware Machine Learning. Bias detection and mitigation for datasets and models. A facet is column or feature that will be used to measure bias against. A facet can have value(s) that designates that sample as "sensitive". Bias detection and mitigation for datasets and models. The label is a column or feature which is the target for training a machine learning model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    DeepCTR-Torch

    DeepCTR-Torch

    Easy-to-use,Modular and Extendible package of deep-learning models

    DeepCTR-Torch is an easy-to-use, Modular and Extendible package of deep-learning-based CTR models along with lots of core components layers that can be used to build your own custom model easily.It is compatible with PyTorch.You can use any complex model with model.fit() and model.predict(). With the great success of deep learning, DNN-based techniques have been widely used in CTR estimation tasks. The data in the CTR estimation task usually includes high sparse,high cardinality categorical features and some dense numerical features. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    TensorFlow.js models

    TensorFlow.js models

    Pretrained models for TensorFlow.js

    This repository hosts a set of pre-trained models that have been ported to TensorFlow.js. The models are hosted on NPM and unpkg so they can be used in any project out of the box. They can be used directly or used in a transfer learning setting with TensorFlow.js. To find out about APIs for models, look at the README in each of the respective directories. In general, we try to hide tensors so the API can be used by non-machine learning experts. New models should have a test NPM script. You can run the unit tests for any of the models by running "yarn test" inside a directory. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Brain AutoML

    Brain AutoML

    Google Brain AutoML

    This repository contains a list of AutoML related models and libraries. Google Brain researchers have introduced a new way of programming automated machine learning (AutoML) based on symbolic programming. The researchers also proposed PyGlove, a general symbolic programming library for Python, to implement the symbolic formulation of AutoML. AutoML, designed to fill the machine learning industry’s talent gap, is gaining traction among various organizations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • The Original Buy Center Software. Icon
    The Original Buy Center Software.

    Never Go To The Auction Again.

    VAN sources private-party vehicles from over 20 platforms and provides all necessary tools to communicate with sellers and manage opportunities. Franchise and Independent dealers can boost their buy center strategies with our advanced tools and an experienced Acquisition Coaching™ team dedicated to your success.
    Learn More
  • 10
    Amazon SageMaker Examples

    Amazon SageMaker Examples

    Jupyter notebooks that demonstrate how to build models using SageMaker

    Welcome to Amazon SageMaker. This projects highlights example Jupyter notebooks for a variety of machine learning use cases that you can run in SageMaker. If you’re new to SageMaker we recommend starting with more feature-rich SageMaker Studio. It uses the familiar JupyterLab interface and has seamless integration with a variety of deep learning and data science environments and scalable compute resources for training, inference, and other ML operations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    PyText

    PyText

    A natural language modeling framework based on PyTorch

    PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapid experimentation and of serving models at scale. It achieves this by providing simple and extensible interfaces and abstractions for model components, and by using PyTorch’s capabilities of exporting models for inference via the optimized Caffe2 execution engine. We use PyText at Facebook to iterate quickly on new modeling ideas and then seamlessly...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Edward

    Edward

    A probabilistic programming language in TensorFlow

    A library for probabilistic modeling, inference, and criticism. Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilistic models, ranging from classical hierarchical models on small data sets to complex deep probabilistic models on large data sets. Edward fuses three fields, Bayesian statistics and machine learning, deep learning, and probabilistic programming. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Image classification models for Keras

    Image classification models for Keras

    Keras code and weights files for popular deep learning models

    All architectures are compatible with both TensorFlow and Theano, and upon instantiation the models will be built according to the image dimension ordering set in your Keras configuration file at ~/.keras/keras.json. For instance, if you have set image_dim_ordering=tf, then any model loaded from this repository will get built according to the TensorFlow dimension ordering convention, "Width-Height-Depth". Pre-trained weights can be automatically loaded upon instantiation (weights='imagenet'...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    GUAJE FUZZY

    GUAJE FUZZY

    Free software for generating understandable and accurate fuzzy systems

    GUAJE stands for Generating Understandable and Accurate fuzzy models in a Java Environment. Thus, it is a free software tool (licensed under GPL-v3) with the aim of supporting the design of interpretable and accurate fuzzy systems by means of combining several preexisting open source tools, taking profit from the main advantages of all of them. It is a user-friendly portable tool designed and developed in order to make easier knowledge extraction and representation for fuzzy systems, paying...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15

    NeuroSolutions: Formula Generator

    Utility converts the weights file of a MLP Breadboard into a formula

    The NeuroSolutions: Formula Generator utility converts the weights file of a default MLP breadboard (1-hidden layer with a TanhAxon in the hidden layer and either a TanhAxon or BiasAxon in the output layer) into a usable formula that can be copied and pasted into your own programs to compute the output of the trained neural network.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    YAKINDU Statechart Tools / itemis CREATE
    itemis CREATE - formerly known as Yakindu Statechart Tools (SCT) - is a tool for the specification and development of reactive, event-driven systems with the help of state machines. It consists of an easy-to-use tool for graphical editing and provides validation, simulation and code generators for different target platforms. Visit http://www.statecharts.org for more information! !! YAKINDU SCT HAS MOVED !! DOWNLOAD FROM https://info.itemis.com/download-yakindu-statechart-tools
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    dxf2mod

    dxf2mod

    DXF to Kicad Module File Converter

    ...Possible improvements include pad detection, and scaling. Currently it the unit system must be in inches for all software. The program itself was written in Autohotkey so it must be used on a Windows machine. I chose this language as it is what I am most familiar with. If there is a use for it I may port it to python so it can be used cross platform.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next