Showing 5 open source projects for "python feature selection"

View related business solutions
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • Next-Gen Encryption for Post-Quantum Security | CLEAR by Quantum Knight Icon
    Next-Gen Encryption for Post-Quantum Security | CLEAR by Quantum Knight

    Lock Down Any Resource, Anywhere, Anytime

    CLEAR by Quantum Knight is a FIPS-140-3 validated encryption SDK engineered for enterprises requiring top-tier security. Offering robust post-quantum cryptography, CLEAR secures files, streaming media, databases, and networks with ease across over 30 modern platforms. Its compact design, smaller than a single smartphone image, ensures maximum efficiency and low energy consumption.
    Learn More
  • 1
    smclarify

    smclarify

    Fairness aware machine learning. Bias detection and mitigation

    Fairness Aware Machine Learning. Bias detection and mitigation for datasets and models. A facet is column or feature that will be used to measure bias against. A facet can have value(s) that designates that sample as "sensitive". Bias detection and mitigation for datasets and models. The label is a column or feature which is the target for training a machine learning model. The label can have value(s) that designates that sample as having a "positive" outcome. A bias measure is a function...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    DeepCTR-Torch

    DeepCTR-Torch

    Easy-to-use,Modular and Extendible package of deep-learning models

    DeepCTR-Torch is an easy-to-use, Modular and Extendible package of deep-learning-based CTR models along with lots of core components layers that can be used to build your own custom model easily.It is compatible with PyTorch.You can use any complex model with model.fit() and model.predict(). With the great success of deep learning, DNN-based techniques have been widely used in CTR estimation tasks. The data in the CTR estimation task usually includes high sparse,high cardinality categorical...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Amazon SageMaker Examples

    Amazon SageMaker Examples

    Jupyter notebooks that demonstrate how to build models using SageMaker

    ...They have the familiar Jupyter and JuypterLab interfaces that work well for single users, or small teams where users are also administrators. Advanced users also use SageMaker solely with the AWS CLI and Python scripts using boto3 and/or the SageMaker Python SDK.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    MSCViewer

    MSCViewer

    A tool for visualization and analysis of logs as sequence diagrams

    ...The diagram is fully interactive: entity can be added/removed from the diagram and shuffled; events can be filtered, searched, highlighted and annotated with comments. MSCViewer features integration with a Python interpreter which allows writing Python scripts interacting with the model. This powerful feature can be used to automate validatation of distributed control flows, integrate with graphing infrastructure, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Teradata VantageCloud Enterprise is a data analytics platform for performing advanced analytics on AWS, Azure, and Google Cloud. Icon
    Teradata VantageCloud Enterprise is a data analytics platform for performing advanced analytics on AWS, Azure, and Google Cloud.

    Power faster innovation with Teradata VantageCloud

    VantageCloud is the complete cloud analytics and data platform, delivering harmonized data and Trusted AI for all. Built for performance, flexibility, and openness, VantageCloud enables organizations to unify diverse data sources, run complex analytics, and deploy AI models—all within a single, scalable platform.
    Learn More
  • 5
    MRA

    MRA

    A general recommender system with basic models and MRA

    Multi-categorization Recommendation Adjusting (MRA) is to optimize the results of recommendation based on traditional(basic) recommendation models, through introducing objective category information and taking use of the feature that users always get the habits of preferring certain categories. Besides this, there are two advantages of this improved model: 1) it can be easily applied to any kind of existing recommendation models. And 2) a controller is set in this improved model to provide...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next