Showing 2 open source projects for "multi-layer perceptron python"

View related business solutions
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    imodelsX

    imodelsX

    Interpretable prompting and models for NLP

    Interpretable prompting and models for NLP (using large language models). Generates a prompt that explains patterns in data (Official) Explain the difference between two distributions. Find a natural-language prompt using input-gradients. Fit a better linear model using an LLM to extract embeddings. Fit better decision trees using an LLM to expand features. Finetune a single linear layer on top of LLM embeddings. Use these just a like a sci-kit-learn model. During training, they fit better...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    CTranslate2

    CTranslate2

    Fast inference engine for Transformer models

    CTranslate2 is a C++ and Python library for efficient inference with Transformer models. The project implements a custom runtime that applies many performance optimization techniques such as weights quantization, layers fusion, batch reordering, etc., to accelerate and reduce the memory usage of Transformer models on CPU and GPU. The execution is significantly faster and requires less resources than general-purpose deep learning frameworks on supported models and tasks thanks to many advanced optimizations: layer fusion, padding removal, batch reordering, in-place operations, caching mechanism, etc. ...
    Downloads: 13 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next