Hyperformer
Hypergraph Transformer for Skeleton-based Action Recognition
This is the official implementation of our paper "Hypergraph Transformer for Skeleton-based Action Recognition." Skeleton-based action recognition aims to recognize human actions given human joint coordinates with skeletal interconnections. By defining a graph with joints as vertices and their natural connections as edges, previous works successfully adopted Graph Convolutional networks (GCNs) to model joint co-occurrences and achieved superior performance. More recently, a limitation of GCNs is identified, i.e., the topology is fixed after training. To relax such a restriction, Self-Attention (SA) mechanism has been adopted to make the topology of GCNs adaptive to the input, resulting in the state-of-the-art hybrid models. ...