Showing 5 open source projects for "python source codes"

View related business solutions
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • Run applications fast and securely in a fully managed environment Icon
    Run applications fast and securely in a fully managed environment

    Cloud Run is a fully-managed compute platform that lets you run your code in a container directly on top of scalable infrastructure.

    Run frontend and backend services, batch jobs, deploy websites and applications, and queue processing workloads without the need to manage infrastructure.
    Try for free
  • 1
    imodelsX

    imodelsX

    Interpretable prompting and models for NLP

    Interpretable prompting and models for NLP (using large language models). Generates a prompt that explains patterns in data (Official) Explain the difference between two distributions. Find a natural-language prompt using input-gradients. Fit a better linear model using an LLM to extract embeddings. Fit better decision trees using an LLM to expand features. Finetune a single linear layer on top of LLM embeddings. Use these just a like a sci-kit-learn model. During training, they fit better...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    CTranslate2

    CTranslate2

    Fast inference engine for Transformer models

    CTranslate2 is a C++ and Python library for efficient inference with Transformer models. The project implements a custom runtime that applies many performance optimization techniques such as weights quantization, layers fusion, batch reordering, etc., to accelerate and reduce the memory usage of Transformer models on CPU and GPU. The execution is significantly faster and requires less resources than general-purpose deep learning frameworks on supported models and tasks thanks to many...
    Downloads: 13 This Week
    Last Update:
    See Project
  • 3
    solo-learn

    solo-learn

    Library of self-supervised methods for visual representation

    A library of self-supervised methods for visual representation learning powered by Pytorch Lightning. A library of self-supervised methods for unsupervised visual representation learning powered by PyTorch Lightning. We aim at providing SOTA self-supervised methods in a comparable environment while, at the same time, implementing training tricks. The library is self-contained, but it is possible to use the models outside of solo-learn.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Hyperformer

    Hyperformer

    Hypergraph Transformer for Skeleton-based Action Recognition

    This is the official implementation of our paper "Hypergraph Transformer for Skeleton-based Action Recognition." Skeleton-based action recognition aims to recognize human actions given human joint coordinates with skeletal interconnections. By defining a graph with joints as vertices and their natural connections as edges, previous works successfully adopted Graph Convolutional networks (GCNs) to model joint co-occurrences and achieved superior performance. More recently, a limitation of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Create and run cloud-based virtual machines. Icon
    Create and run cloud-based virtual machines.

    Secure and customizable compute service that lets you create and run virtual machines.

    Computing infrastructure in predefined or custom machine sizes to accelerate your cloud transformation. General purpose (E2, N1, N2, N2D) machines provide a good balance of price and performance. Compute optimized (C2) machines offer high-end vCPU performance for compute-intensive workloads. Memory optimized (M2) machines offer the highest memory and are great for in-memory databases. Accelerator optimized (A2) machines are based on the A100 GPU, for very demanding applications.
    Try for free
  • 5
    Neuro-comma

    Neuro-comma

    Punctuation restoration production-ready model for Russian language

    This library was developed with the idea to help us to create punctuation restoration models to memorize trained parameters, data, training visualization, etc. The Library doesn't use any high-level frameworks, such as PyTorch-lightning or Keras, to reduce the level entry threshold. Feel free to fork this repo and edit model or dataset classes for your purposes. Our team always uses the latest version and features of Python. We started with Python 3.9, but realized, that there is no FastAPI...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next