Showing 2 open source projects for "poppler-24"

View related business solutions
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • 1
    WavTokenizer

    WavTokenizer

    SOTA discrete acoustic codec models with 40/75 tokens per second

    WavTokenizer is a state-of-the-art discrete acoustic codec designed specifically for audio language modeling, capable of compressing 24 kHz audio into just 40 or 75 tokens per second while preserving high perceptual quality. It is built to represent speech, music, and general audio with extremely low bitrate, making it ideal as a front-end for large audio language models like GPT-4o and similar architectures. The model uses a single-quantizer design together with temporal compression to achieve extreme compression without sacrificing reconstruction fidelity. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    MARS5

    MARS5

    MARS5 speech model (TTS) from CAMB.AI

    MARS5-TTS is CAMB.AI’s open-source English speech model designed for high-quality text-to-speech and voice emulation. It uses a two-stage architecture that combines an autoregressive (AR) model with a non-autoregressive (NAR) model, giving it both expressiveness and speed. The model is built to handle prosodically challenging content such as sports commentary, anime dialogue, and other high-energy or highly varied speech patterns with realistic rhythm and intonation. To control speaker...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next