MARS5
MARS5 speech model (TTS) from CAMB.AI
...It uses a two-stage architecture that combines an autoregressive (AR) model with a non-autoregressive (NAR) model, giving it both expressiveness and speed. The model is built to handle prosodically challenging content such as sports commentary, anime dialogue, and other high-energy or highly varied speech patterns with realistic rhythm and intonation. To control speaker identity, MARS5 uses a short reference audio clip, typically between 2 and 12 seconds, from which it learns the voice characteristics. It supports two main inference modes: shallow clone, which is faster and only needs the reference audio, and deep clone, which additionally uses the transcript of the reference audio to increase similarity and naturalness at the cost of more computation.