Showing 3 open source projects for "jpk data processing"

View related business solutions
  • Run Any Workload on Compute Engine VMs Icon
    Run Any Workload on Compute Engine VMs

    From dev environments to AI training, choose preset or custom VMs with 1–96 vCPUs and industry-leading 99.95% uptime SLA.

    Compute Engine delivers high-performance virtual machines for web apps, databases, containers, and AI workloads. Choose from general-purpose, compute-optimized, or GPU/TPU-accelerated machine types—or build custom VMs to match your exact specs. With live migration and automatic failover, your workloads stay online. New customers get $300 in free credits.
    Try Compute Engine
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    ESPnet

    ESPnet

    End-to-end speech processing toolkit

    ESPnet is a comprehensive end-to-end speech processing toolkit covering a wide spectrum of tasks, including automatic speech recognition (ASR), text-to-speech (TTS), speech translation (ST), speech enhancement, speaker diarization, and spoken language understanding. It uses PyTorch as its deep learning engine and adopts a Kaldi-style data processing pipeline for features, data formats, and experimental recipes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    NVIDIA NeMo

    NVIDIA NeMo

    Toolkit for conversational AI

    NVIDIA NeMo, part of the NVIDIA AI platform, is a toolkit for building new state-of-the-art conversational AI models. NeMo has separate collections for Automatic Speech Recognition (ASR), Natural Language Processing (NLP), and Text-to-Speech (TTS) models. Each collection consists of prebuilt modules that include everything needed to train on your data. Every module can easily be customized, extended, and composed to create new conversational AI model architectures. Conversational AI architectures are typically large and require a lot of data and compute for training. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Orpheus TTS

    Orpheus TTS

    Towards Human-Sounding Speech

    ...It is designed to produce human-like speech with natural intonation, emotion, and rhythm, targeting quality comparable to or better than many closed-source systems. The project ships both pretrained and finetuned English models, as well as a family of multilingual models released as a research preview, and includes data-processing scripts so users can train or finetune their own variants. Inference is provided through a Python package that uses vLLM under the hood for high-throughput, low-latency generation, including streaming examples that show how to generate audio chunks in real time. The maintainers provide Colab notebooks, a standardized prompting format, and one-click deployment via Baseten for production-grade, FP8/FP16 optimized inference with ~200 ms streaming latency.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB