OpenSeq2Seq
Toolkit for efficient experimentation with Speech Recognition
OpenSeq2Seq is a TensorFlow-based toolkit for efficient experimentation with sequence-to-sequence models across speech and NLP tasks. Its core goal is to give researchers a flexible, modular framework for building and training encoder–decoder architectures while fully leveraging distributed and mixed-precision training. The toolkit includes ready-made models for neural machine translation, automatic speech recognition, speech synthesis, language modeling, and additional NLP tasks such as...