7 projects for "deep learning with python" with 2 filters applied:

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 1
    ESPnet

    ESPnet

    End-to-end speech processing toolkit

    ESPnet is a comprehensive end-to-end speech processing toolkit covering a wide spectrum of tasks, including automatic speech recognition (ASR), text-to-speech (TTS), speech translation (ST), speech enhancement, speaker diarization, and spoken language understanding. It uses PyTorch as its deep learning engine and adopts a Kaldi-style data processing pipeline for features, data formats, and experimental recipes. This combination allows researchers to leverage modern neural architectures while still benefiting from the robust data preparation practices developed in the speech community. ESPnet provides many ready-to-run recipes for popular academic benchmarks, making it straightforward to reproduce published results or serve as baselines for new research. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    MARS5

    MARS5

    MARS5 speech model (TTS) from CAMB.AI

    MARS5-TTS is CAMB.AI’s open-source English speech model designed for high-quality text-to-speech and voice emulation. It uses a two-stage architecture that combines an autoregressive (AR) model with a non-autoregressive (NAR) model, giving it both expressiveness and speed. The model is built to handle prosodically challenging content such as sports commentary, anime dialogue, and other high-energy or highly varied speech patterns with realistic rhythm and intonation. To control speaker...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    edge-tts

    edge-tts

    Use Microsoft Edge's online text-to-speech service from Python

    edge-tts is a Python module and command-line tool that gives you direct access to Microsoft Edge’s online text-to-speech service without needing the Edge browser, Windows, or any API key. It wraps the same cloud voices used by Edge, exposing them through a simple CLI (edge-tts, edge-playback) and a Python API, so you can script high-quality speech generation in your own applications.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    FastRTC

    FastRTC

    The python library for real-time communication

    FastRTC is a Python library designed to simplify real-time communication (RTC), especially for audio and video streaming applications. It abstracts away much of the complexity that typically comes with implementing WebRTC by providing a simple interface — e.g. a Stream class — that can be mounted within a web backend (for example a FastAPI application).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    VITS

    VITS

    Conditional Variational Autoencoder with Adversarial Learning

    VITS is a foundational research implementation of “VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech,” a well-known neural TTS architecture. Unlike traditional two-stage systems that separately train an acoustic model and a vocoder, VITS trains an end-to-end model that maps text directly to waveform using a conditional variational autoencoder combined with normalizing flows and adversarial training. This architecture enables parallel generation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Transformer TTS

    Transformer TTS

    Implementation of a Transformer based neural network

    TransformerTTS is an implementation of a non-autoregressive Transformer-based neural network for text-to-speech, built with TensorFlow 2. It takes inspiration from architectures like FastSpeech, FastSpeech 2, FastPitch, and Transformer TTS, and extends them with its own aligner and forward models. The system separates alignment learning and acoustic modeling: an autoregressive Transformer is used as an aligner to extract phoneme-to-frame durations, while a non-autoregressive...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    DC-TTS

    DC-TTS

    TensorFlow Implementation of DC-TTS: yet another text-to-speech model

    DC-TTS is a TensorFlow implementation of the DC-TTS architecture, a fully convolutional text-to-speech system designed to be efficiently trainable while producing natural speech. It follows the “Efficiently Trainable Text-to-Speech System Based on Deep Convolutional Networks with Guided Attention” paper, but the author adapts and extends the design to make it practical for real experiments. The model is split into two networks: Text2Mel, which maps text to mel-spectrograms, and SSRN...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next