Showing 6 open source projects for "parallel"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 1
    Parallel WaveGAN

    Parallel WaveGAN

    Unofficial Parallel WaveGAN

    Parallel WaveGAN is an unofficial PyTorch implementation of several state-of-the-art non-autoregressive neural vocoders, centered on Parallel WaveGAN but also including MelGAN, Multiband-MelGAN, HiFi-GAN, and StyleMelGAN. Its main goal is to provide a real-time neural vocoder that can turn mel spectrograms into high-quality speech audio efficiently.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Mastra

    Mastra

    The TypeScript AI agent framework

    ...Model routing lets you connect to dozens of providers (OpenAI, Anthropic, Gemini, and others) through a single standardized interface, while agents orchestrate LLM calls and tools to solve open-ended tasks with internal reasoning loops. When explicit control is needed, Mastra’s workflow engine uses a graph-style API (.then(), .branch(), .parallel()) to orchestrate multi-step processes.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    vits_chinese

    vits_chinese

    Best practice TTS based on BERT and VITS

    vits_chinese is an implementation of the VITS end-to-end text-to-speech (TTS) architecture tailored for Chinese (and possibly multilingual) speech synthesis. VITS is a model combining variational autoencoders (VAEs), normalizing flows, adversarial learning, and a stochastic duration predictor — a design that enables generation of natural, expressive speech, capturing variations in rhythm and prosody. By customizing or porting VITS for Chinese, this project aims to produce high-quality TTS...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    VITS

    VITS

    Conditional Variational Autoencoder with Adversarial Learning

    ...Unlike traditional two-stage systems that separately train an acoustic model and a vocoder, VITS trains an end-to-end model that maps text directly to waveform using a conditional variational autoencoder combined with normalizing flows and adversarial training. This architecture enables parallel generation (fast inference) while achieving speech quality that rivals or surpasses many two-stage systems. The repository provides training and inference pipelines for common datasets such as LJ Speech (single-speaker) and VCTK (multi-speaker), including filelists, configs, and preprocessing scripts. It also includes monotonic alignment search code and g2p preprocessing, which are crucial components for aligning text and speech in an end-to-end setup.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 5
    Transformer TTS

    Transformer TTS

    Implementation of a Transformer based neural network

    ...This design addresses common autoregressive issues such as repetition, skipped words, and unstable attention, and results in robust, fast synthesis where all frames are predicted in parallel. The repository ships with tooling to build datasets (especially LJSpeech) and create training data, plus scripts to train both the aligner and the TTS model, monitor training with TensorBoard, and resume or reset training runs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    OpenSeq2Seq

    OpenSeq2Seq

    Toolkit for efficient experimentation with Speech Recognition

    ...The toolkit includes ready-made models for neural machine translation, automatic speech recognition, speech synthesis, language modeling, and additional NLP tasks such as sentiment analysis. It supports multi-GPU and multi-node data-parallel training, and integrates with Horovod to scale out across large GPU clusters. Mixed-precision support (float16) is optimized for NVIDIA Volta and Turing GPUs, allowing significant speedups and memory savings without sacrificing model quality. The project comes with configuration-driven training scripts, documentation, and examples that demonstrate how to set up pipelines for tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next