Showing 2 open source projects for "gpu"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    Stats

    Stats

    macOS system monitor in your menu bar

    Stats currently supported on macOS 10.13 (High Sierra) and higher. Stats is an application that allows you to monitor your macOS system. CPU utilization, GPU utilization, memory usage, disk utilization, sensors information (Temperature/Voltage/Power), battery level, network usage, fans speed, fan control, and Bluetooth devices. Supports many languages, such as English, Polski, Українська, Русский, and many more. You can help by adding a new language or improve existing translation.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 2
    GPUImage 2

    GPUImage 2

    Framework for GPU-accelerated video and image processing

    ...By relying on the GPU to run these operations, performance improvements of 100X or more over CPU-bound code can be realized. This is particularly noticeable in mobile or embedded devices. On an iPhone 4S, this framework can easily process 1080p video at over 60 FPS. On a Raspberry Pi 3, it can perform Sobel edge detection on live 720p video at over 20 FPS.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next