Showing 8 open source projects for "machine learning python"

View related business solutions
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 1
    Synthetic Data Vault (SDV)

    Synthetic Data Vault (SDV)

    Synthetic Data Generation for tabular, relational and time series data

    The Synthetic Data Vault (SDV) is a Synthetic Data Generation ecosystem of libraries that allows users to easily learn single-table, multi-table and timeseries datasets to later on generate new Synthetic Data that has the same format and statistical properties as the original dataset. Synthetic data can then be used to supplement, augment and in some cases replace real data when training Machine Learning models. Additionally, it enables the testing of Machine Learning or other data dependent software systems without the risk of exposure that comes with data disclosure. Underneath the hood it uses several probabilistic graphical modeling and deep learning based techniques. To enable a variety of data storage structures, we employ unique hierarchical generative modeling and recursive sampling techniques.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    SDGym

    SDGym

    Benchmarking synthetic data generation methods

    ...Or write your own custom machine learning model. In addition to performance and memory usage, you can also measure synthetic data quality and privacy through a variety of metrics. Install SDGym using pip or conda. We recommend using a virtual environment to avoid conflicts with other software on your device.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    CTGAN

    CTGAN

    Conditional GAN for generating synthetic tabular data

    CTGAN is a collection of Deep Learning based synthetic data generators for single table data, which are able to learn from real data and generate synthetic data with high fidelity. If you're just getting started with synthetic data, we recommend installing the SDV library which provides user-friendly APIs for accessing CTGAN. The SDV library provides wrappers for preprocessing your data as well as additional usability features like constraints. When using the CTGAN library directly, you may...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Zylthra

    Zylthra

    Zylthra: A PyQt6 app to generate synthetic datasets with DataLLM.

    Welcome to Zylthra, a powerful Python-based desktop application built with PyQt6, designed to generate synthetic datasets using the DataLLM API from data.mostly.ai. This tool allows users to create custom datasets by defining columns, configuring generation parameters, and saving setups for reuse, all within a sleek, dark-themed interface.
    Downloads: 1 This Week
    Last Update:
    See Project
  • The complete IT asset and license management platform Icon
    The complete IT asset and license management platform

    Gain full visibility and control over your IT assets, licenses, usage and spend in one place with Setyl.

    The platform seamlessly integrates with 100+ IT systems, including MDM, RMM, IDP, SSO, HR, finance, helpdesk tools, and more.
    Learn More
  • 5
    Twinify

    Twinify

    Privacy-preserving generation of a synthetic twin to a data set

    twinify is a software package for the privacy-preserving generation of a synthetic twin to a given sensitive tabular data set. On a high level, twinify follows the differentially private data-sharing process introduced by Jälkö et al.. Depending on the nature of your data, twinify implements either the NAPSU-MQ approach described by Räisä et al. or finds an approximate parameter posterior for any probabilistic model you formulated using differentially private variational inference (DPVI)....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Synthetic Mixed Data Generator
    A Synthetic Data Generator for producing mixed datasets described by relevant, irrelevant, and redundant features.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7

    rpackage conjurer

    Synthetic data generation using R

    Builds synthetic data applicable across multiple domains. This package also provides flexibility to control data distribution to make it relevant to many industry examples.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8

    A Data Generator

    A tool to generate synthetic test data useful to Record matchers

    With growing amount of information from multiple sources it has become very hard to relate information to the correct real life entities. Record matching software try to solve this by machine learning techniques. To do this effectively, its necessary to train the record matcher with proper test data which is identical to real life data. Hence, there is a need for a data generator to create the synthetic data to be used for evaluating the quality and capability of record matching software. A data generator creates qualitative test data considering various the real life data glitches entered through various means like human data entry, voice dictation and data scanning. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next