Showing 9 open source projects for "artificial intelligence python"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 1
    YData Synthetic

    YData Synthetic

    Synthetic data generators for tabular and time-series data

    A package to generate synthetic tabular and time-series data leveraging state-of-the-art generative models. Synthetic data is artificially generated data that is not collected from real-world events. It replicates the statistical components of real data without containing any identifiable information, ensuring individuals' privacy. This repository contains material related to Generative Adversarial Networks for synthetic data generation, in particular regular tabular data and time-series. It...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    CTGAN

    CTGAN

    Conditional GAN for generating synthetic tabular data

    CTGAN is a collection of Deep Learning based synthetic data generators for single table data, which are able to learn from real data and generate synthetic data with high fidelity. If you're just getting started with synthetic data, we recommend installing the SDV library which provides user-friendly APIs for accessing CTGAN. The SDV library provides wrappers for preprocessing your data as well as additional usability features like constraints. When using the CTGAN library directly, you may...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Synthetic Data Vault (SDV)

    Synthetic Data Vault (SDV)

    Synthetic Data Generation for tabular, relational and time series data

    The Synthetic Data Vault (SDV) is a Synthetic Data Generation ecosystem of libraries that allows users to easily learn single-table, multi-table and timeseries datasets to later on generate new Synthetic Data that has the same format and statistical properties as the original dataset. Synthetic data can then be used to supplement, augment and in some cases replace real data when training Machine Learning models. Additionally, it enables the testing of Machine Learning or other data dependent...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    SDGym

    SDGym

    Benchmarking synthetic data generation methods

    The Synthetic Data Gym (SDGym) is a benchmarking framework for modeling and generating synthetic data. Measure performance and memory usage across different synthetic data modeling techniques – classical statistics, deep learning and more! The SDGym library integrates with the Synthetic Data Vault ecosystem. You can use any of its synthesizers, datasets or metrics for benchmarking. You also customize the process to include your own work. Select any of the publicly available datasets from the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Dun and Bradstreet Risk Analytics - Supplier Intelligence Icon
    Dun and Bradstreet Risk Analytics - Supplier Intelligence

    Use an AI-powered solution for supply and compliance teams who want to mitigate costly supplier risks intelligently.

    Risk, procurement, and compliance teams across the globe are under pressure to deal with geopolitical and business risks. Third-party risk exposure is impacted by rapidly scaling complexity in domestic and cross-border businesses, along with complicated and diverse regulations. It is extremely important for companies to proactively manage their third-party relationships. An AI-powered solution to mitigate and monitor counterparty risks on a continuous basis, this cutting-edge platform is powered by D&B’s Data Cloud with 520M+ Global Business Records and 2B+ yearly updates for third-party risk insights. With high-risk procurement alerts and multibillion match points, D&B Risk Analytics leverages best-in-class risk data to help drive informed decisions. Perform quick and comprehensive screening, using intelligent workflows. Receive ongoing alerts of key business indicators and disruptions.
    Learn More
  • 5
    Zylthra

    Zylthra

    Zylthra: A PyQt6 app to generate synthetic datasets with DataLLM.

    Welcome to Zylthra, a powerful Python-based desktop application built with PyQt6, designed to generate synthetic datasets using the DataLLM API from data.mostly.ai. This tool allows users to create custom datasets by defining columns, configuring generation parameters, and saving setups for reuse, all within a sleek, dark-themed interface.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Synthetic Mixed Data Generator
    A Synthetic Data Generator for producing mixed datasets described by relevant, irrelevant, and redundant features.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7

    rpackage conjurer

    Synthetic data generation using R

    Builds synthetic data applicable across multiple domains. This package also provides flexibility to control data distribution to make it relevant to many industry examples.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    TGAN

    TGAN

    Generative adversarial training for generating synthetic tabular data

    We are happy to announce that our new model for synthetic data called CTGAN is open-sourced. The new model is simpler and gives better performance on many datasets. TGAN is a tabular data synthesizer. It can generate fully synthetic data from real data. Currently, TGAN can generate numerical columns and categorical columns. TGAN has been developed and runs on Python 3.5, 3.6 and 3.7. Also, although it is not strictly required, the usage of a virtualenv is highly recommended in order to avoid...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9

    A Data Generator

    A tool to generate synthetic test data useful to Record matchers

    With growing amount of information from multiple sources it has become very hard to relate information to the correct real life entities. Record matching software try to solve this by machine learning techniques. To do this effectively, its necessary to train the record matcher with proper test data which is identical to real life data. Hence, there is a need for a data generator to create the synthetic data to be used for evaluating the quality and capability of record matching software....
    Downloads: 0 This Week
    Last Update:
    See Project
  • Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place. Icon
    Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place.

    For healthcare Providers and Facilities

    Incredable streamlines and simplifies the complex process of medical credentialing for hospitals and medical facilities, helping you save valuable time, reduce costs, and minimize risks. With Incredable, you can effortlessly manage all your healthcare providers and their credentials within a single, unified platform. Our state-of-the-art technology ensures top-notch data security, giving you peace of mind.
    Learn More
  • Previous
  • You're on page 1
  • Next