Open Source Windows Synthetic Data Generation Software

Synthetic Data Generation Software for Windows

View 9 business solutions

Browse free open source Synthetic Data Generation software and projects for Windows below. Use the toggles on the left to filter open source Synthetic Data Generation software by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 by Okta Icon
    Our Free Plans just got better! | Auth0 by Okta

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your secuirty. Auth0 now, thank yourself later.
    Try free now
  • Deliver secure remote access with OpenVPN. Icon
    Deliver secure remote access with OpenVPN.

    Trusted by nearly 20,000 customers worldwide, and all major cloud providers.

    OpenVPN's products provide scalable, secure remote access — giving complete freedom to your employees to work outside the office while securely accessing SaaS, the internet, and company resources.
    Get started — no credit card required.
  • 1
    CTGAN

    CTGAN

    Conditional GAN for generating synthetic tabular data

    CTGAN is a collection of Deep Learning based synthetic data generators for single table data, which are able to learn from real data and generate synthetic data with high fidelity. If you're just getting started with synthetic data, we recommend installing the SDV library which provides user-friendly APIs for accessing CTGAN. The SDV library provides wrappers for preprocessing your data as well as additional usability features like constraints. When using the CTGAN library directly, you may need to manually preprocess your data into the correct format, for example, continuous data must be represented as floats. Discrete data must be represented as ints or strings. The data should not contain any missing values.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    SDGym

    SDGym

    Benchmarking synthetic data generation methods

    The Synthetic Data Gym (SDGym) is a benchmarking framework for modeling and generating synthetic data. Measure performance and memory usage across different synthetic data modeling techniques – classical statistics, deep learning and more! The SDGym library integrates with the Synthetic Data Vault ecosystem. You can use any of its synthesizers, datasets or metrics for benchmarking. You also customize the process to include your own work. Select any of the publicly available datasets from the SDV project, or input your own data. Choose from any of the SDV synthesizers and baselines. Or write your own custom machine learning model. In addition to performance and memory usage, you can also measure synthetic data quality and privacy through a variety of metrics. Install SDGym using pip or conda. We recommend using a virtual environment to avoid conflicts with other software on your device.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Synthea Patient Generator

    Synthea Patient Generator

    Synthetic Patient Population Simulator

    SyntheaTM is an open-source, synthetic patient generator that models the medical history of synthetic patients. Our mission is to provide high-quality, synthetic, realistic but not real, patient data and associated health records covering every aspect of healthcare. The resulting data is free from cost, privacy, and security restrictions, enabling research with Health IT data that is otherwise legally or practically unavailable. The models used to generate synthetic patients are informed by numerous academic publications. Our synthetic populations provide insight into the validity of this research and encourage future studies in population health. Synthetic data establishes a risk-free environment for Health IT development and experimentation. This includes the evaluation of new treatment models, care management systems, clinical decision support, and more.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    benerator is a framework for creating realistic and valid high-volume test data, used for load and performance testing and showcase setup. Data is generated from an easily configurable metadata model and exported to databases, XML, CSV or flat files.
    Leader badge
    Downloads: 1 This Week
    Last Update:
    See Project
  • Payroll Services for Small Businesses | QuickBooks Icon
    Payroll Services for Small Businesses | QuickBooks

    Save up to 50% on QuickBooks Online! Keep the Accounting and Book Keeping for your Small Business up to date!

    Easily pay your team and access powerful tools, employee benefits, and supportive experts with the #1 online payroll service provider. Manage payroll and access HR and employee services in one place. Pay your team automatically once your payroll setup is complete. We'll calculate, file, and pay your payroll taxes automatically.
    Learn More
  • 5
    Generates configurable datasets which emulate user transactions. Modified to compile in VS 2008, and run in Windows. Original files seemingly no longer available through IBM, but mirrored here: http://www.cs.loyola.edu/~cgiannel/assoc_gen.html .
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6

    A Data Generator

    A tool to generate synthetic test data useful to Record matchers

    With growing amount of information from multiple sources it has become very hard to relate information to the correct real life entities. Record matching software try to solve this by machine learning techniques. To do this effectively, its necessary to train the record matcher with proper test data which is identical to real life data. Hence, there is a need for a data generator to create the synthetic data to be used for evaluating the quality and capability of record matching software. A data generator creates qualitative test data considering various the real life data glitches entered through various means like human data entry, voice dictation and data scanning. The data generation process is done in many steps like org data creation, data grouping, pair generation, data mutation and matching data patterns. Data generator also mangles field values of generated test data to achieve data errors and co-relate them in real life contexts like Family, Households, Organizations etc
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Ava: Testdata Xsl

    Ava: Testdata Xsl

    generates Testdata on base of excel: creates xml,excel,csv,html,sql,+

    this tool for test-data-generation receives an 'excel-sheet' as primary input. second important paramter is the 'number of test-records to produce'. The excel-data will be reused as long data is needed. This tool is hightly paramatrisazable by the use of 'xsl scripts'. data can be created, updated, modified and finally exported in a format of your choice Main Fuctions: (1) Generates Testdata (excel, xsl, xml) (2) Exports generated testdata in multiple formats (csv, excel, html, sql-insert, individual by xsl extension) (3) Collect all processed data in excel-files (4) plus: Xsl Executor, which let's you run xsl-scripts independently (5) plus: User Interface
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    BlenderProc

    BlenderProc

    Blender pipeline for photorealistic training image generation

    A procedural Blender pipeline for photorealistic training image generation. BlenderProc has to be run inside the blender python environment, as only there we can access the blender API. Therefore, instead of running your script with the usual python interpreter, the command line interface of BlenderProc has to be used. In general, one run of your script first loads or constructs a 3D scene, then sets some camera poses inside this scene and renders different types of images (RGB, distance, semantic segmentation, etc.) for each of those camera poses. Usually, you will run your script multiple times, each time producing a new scene and rendering e.g. 5-20 images from it. With a little more experience, it is also possible to change scenes during a single script call, read here how this is done. As blenderproc runs in blenders separate python environment, debugging your blenderproc script cannot be done in the same way as with any other python script.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Bogus

    Bogus

    A simple and sane fake data generator for C#, F#, and VB.NET

    Bogus is a simple and sane fake data generator for .NET languages like C#, F# and VB.NET. Bogus is fundamentally a C# port of faker.js and inspired by FluentValidation's syntax sugar. Bogus will help you load databases, UI and apps with fake data for your testing needs. When Bogus updates locales from faker.js or issues bug fixes, sometimes deterministic sequences can change. Changes to deterministic outputs are usually highlighted in the release notes. Changes to deterministic outputs is also considered a breaking change. Bogus generally follows semantic versioning rules. For maximum stability for unit tests, stay within the same major versions of Bogus. Bogus can generate deterministic dates and times. However, generating deterministic dates and times requires setting up a local or global seed value, and setting up a global anchor source of time in Bogus.DataSets.Date.SystemClock.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Free CRM Software With Something for Everyone Icon
    Free CRM Software With Something for Everyone

    216,000+ customers in over 135 countries grow their businesses with HubSpot

    Think CRM software is just about contact management? Think again. HubSpot CRM has free tools for everyone on your team, and it’s 100% free. Here’s how our free CRM solution makes your job easier.
    Get free CRM
  • 10
    Copulas

    Copulas

    A library to model multivariate data using copulas

    Copulas is a Python library for modeling multivariate distributions and sampling from them using copula functions. Given a table of numerical data, use Copulas to learn the distribution and generate new synthetic data following the same statistical properties. Choose from a variety of univariate distributions and copulas – including Archimedian Copulas, Gaussian Copulas and Vine Copulas. Compare real and synthetic data visually after building your model. Visualizations are available as 1D histograms, 2D scatterplots and 3D scatterplots. Access & manipulate learned parameters. With complete access to the internals of the model, set or tune parameters to your choosing.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    DATA Gen™

    DATA Gen™

    DATA Gen™ - Test Data Generator to generate realistic test data.

    DATA Gen™ Test Data Generator offers facilities to automate the task of creating test data for new or existing data bases. It helps lower the programming effort required, while reducing manual test data generation errors and the ripple effect that they cause on production systems, users and maintenance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    DBFeeder

    DBFeeder

    Highly Customizable Test Data Generator

    DBFeeder is a great tool to generate synthetic testdata for Oracle Databases and it is ideal for companies who wants to outsource development. Thanks to his original approach, data can be highly customizable and it even fits primary and foreign keys constraints of tables.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    DaGen is a test data generator for various databases like SQL Server,Oracle,MySQL.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Gretel Synthetics

    Gretel Synthetics

    Synthetic data generators for structured and unstructured text

    Unlock unlimited possibilities with synthetic data. Share, create, and augment data with cutting-edge generative AI. Generate unlimited data in minutes with synthetic data delivered as-a-service. Synthesize data that are as good or better than your original dataset, and maintain relationships and statistical insights. Customize privacy settings so that data is always safe while remaining useful for downstream workflows. Ensure data accuracy and privacy confidently with expert-grade reports. Need to synthesize one or multiple data types? We have you covered. Even take advantage or multimodal data generation. Synthesize and transform multiple tables or entire relational databases. Mitigate GDPR and CCPA risks, and promote safe data access. Accelerate CI/CD workflows, performance testing, and staging. Augment AI training data, including minority classes and unique edge cases. Amaze prospects with personalized product experiences.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    JRandO is a test data generator or better test object generator framework. It can be used in JUnit tests or in performance test (for e.g. using JMeter). It may also be useful in anonymization of data or in a simulation environment.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Sample code for JRandO project. (testdata generator, test data generator, test object generator, simulation)
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Mimesis

    Mimesis

    High-performance fake data generator for Python

    Mimesis is an open source high-performance fake data generator for Python, able to provide data for various purposes in various languages. It's currently the fastest fake data generator for Python, and supports many different data providers that can produce data related to people, food, transportation, internet and many more. Mimesis is really easy to use, with everything you need just an import away. Simply import an object, called a Provider, which represents the type of data you need. Mimesis currently supports 34 different locales, the specification of which when creating providers will return data that is appropriate for the language or country associated with that locale.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Synth

    Synth

    The Declarative Data Generator

    Synth is an open-source data-as-code tool that provides a simple CLI workflow for generating consistent data in a scalable way. Use Synth to generate correct, anonymized data that looks and quacks like production. Generate test data fixtures for your development, testing, and continuous integration. Generate data that tells the story you want to tell. Specify constraints, relations, and all your semantics. Seed development and environments and CI. Anonymize sensitive production data. Create realistic data to your specifications. Synth uses a declarative configuration language that allows you to specify your entire data model as code. Synth can import data straight from existing sources and automatically create accurate and versatile data models. Synth supports semi-structured data and is database agnostic, playing nicely with SQL and NoSQL databases. Synth supports generation for thousands of semantic types such as credit card numbers, email addresses, and more.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Synthetic Data Vault (SDV)

    Synthetic Data Vault (SDV)

    Synthetic Data Generation for tabular, relational and time series data

    The Synthetic Data Vault (SDV) is a Synthetic Data Generation ecosystem of libraries that allows users to easily learn single-table, multi-table and timeseries datasets to later on generate new Synthetic Data that has the same format and statistical properties as the original dataset. Synthetic data can then be used to supplement, augment and in some cases replace real data when training Machine Learning models. Additionally, it enables the testing of Machine Learning or other data dependent software systems without the risk of exposure that comes with data disclosure. Underneath the hood it uses several probabilistic graphical modeling and deep learning based techniques. To enable a variety of data storage structures, we employ unique hierarchical generative modeling and recursive sampling techniques.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Synthetic Mixed Data Generator
    A Synthetic Data Generator for producing mixed datasets described by relevant, irrelevant, and redundant features.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    TDG - Test data generator

    TDG - Test data generator

    Test dataset generator with export options to database, csv and json

    An utility capable of producing simple datasets with test data with accordance to user-provided patterns and settings. Datasets can be afterwards exported to JSON and CSV files as well as to database table. At moment, SQL Server and PostgreSQL export providers implemented.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    TGAN

    TGAN

    Generative adversarial training for generating synthetic tabular data

    We are happy to announce that our new model for synthetic data called CTGAN is open-sourced. The new model is simpler and gives better performance on many datasets. TGAN is a tabular data synthesizer. It can generate fully synthetic data from real data. Currently, TGAN can generate numerical columns and categorical columns. TGAN has been developed and runs on Python 3.5, 3.6 and 3.7. Also, although it is not strictly required, the usage of a virtualenv is highly recommended in order to avoid interfering with other software installed in the system where TGAN is run. For development, you can use make install-develop instead in order to install all the required dependencies for testing and code listing. In order to be able to sample new synthetic data, TGAN first needs to be fitted to existing data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23

    Test data generator

    Random test data generator

    It's a free portable win32 application to generate random test data, with support of only even or only odd numbers. It's easy to test your code on large amount of data. For test integers than 10000 it directly copies the test data to clipboard and for greater amount of data it creates a TXT file in d:\ path.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Tofu

    Tofu

    Tofu is a Python tool for generating synthetic UK Biobank data

    Tofu is a Python library for generating synthetic UK Biobank data. The UK Biobank is a large open-access prospective research cohort study of 500,000 middle-aged participants recruited in England, Scotland and Wales. The study has collected and continues to collect extensive phenotypic and genotypic detail about its participants, including data from questionnaires, physical measures, sample assays, accelerometry, multimodal imaging, genome-wide genotyping and longitudinal follow-up for a wide range of health-related outcomes. Tofu will generate synthetic data which conforms to the structure of the baseline data UK Biobank sends researchers by generating random values. For categorical variables (single or multiple choices), a random value will be picked from the UK Biobank data dictionary for that field. For continuous variables, a random value will be generated based on the distribution of values reported for that field on the UK Biobank showcase.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Twinify

    Twinify

    Privacy-preserving generation of a synthetic twin to a data set

    twinify is a software package for the privacy-preserving generation of a synthetic twin to a given sensitive tabular data set. On a high level, twinify follows the differentially private data-sharing process introduced by Jälkö et al.. Depending on the nature of your data, twinify implements either the NAPSU-MQ approach described by Räisä et al. or finds an approximate parameter posterior for any probabilistic model you formulated using differentially private variational inference (DPVI). For the latter, twinify also offers automatic modeling for easy building of models fitting the data. If you have existing experience with NumPyro you can also implement your own model directly. Often data that would be very useful for the scientific community is subject to privacy regulations and concerns and cannot be shared. Differentially private data sharing allows generating of synthetic data that is statistically similar to the original data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next