Showing 3 open source projects for "telegram source code"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • GiveLife365: Powering Nonprofits with Smart CRM. Icon
    GiveLife365: Powering Nonprofits with Smart CRM.

    Effortlessly manage donors, members, events, volunteers, and create a positive impact, all from one system. Build as you grow and empower your cause

    Managing constituents - donors, volunteers, events, and cases shouldn’t slow down your mission. GiveLife365 is a cloud-based CRM built for nonprofits, helping you streamline operations, boost engagement, and measure real impact—all in one place.
    Learn More
  • 1
    Synthetic Data Vault (SDV)

    Synthetic Data Vault (SDV)

    Synthetic Data Generation for tabular, relational and time series data

    The Synthetic Data Vault (SDV) is a Synthetic Data Generation ecosystem of libraries that allows users to easily learn single-table, multi-table and timeseries datasets to later on generate new Synthetic Data that has the same format and statistical properties as the original dataset. Synthetic data can then be used to supplement, augment and in some cases replace real data when training Machine Learning models. Additionally, it enables the testing of Machine Learning or other data dependent...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Synthetic Data Kit

    Synthetic Data Kit

    Tool for generating high quality Synthetic datasets

    Synthetic Data Kit is a CLI-centric toolkit for generating high-quality synthetic datasets to fine-tune Llama models, with an emphasis on producing reasoning traces and QA pairs that line up with modern instruction-tuning formats. It ships an opinionated, modular workflow that covers ingesting heterogeneous sources (documents, transcripts), prompting models to create labeled examples, and exporting to fine-tuning schemas with minimal glue code. The kit’s design goal is to shorten the “data...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    TGAN

    TGAN

    Generative adversarial training for generating synthetic tabular data

    We are happy to announce that our new model for synthetic data called CTGAN is open-sourced. The new model is simpler and gives better performance on many datasets. TGAN is a tabular data synthesizer. It can generate fully synthetic data from real data. Currently, TGAN can generate numerical columns and categorical columns. TGAN has been developed and runs on Python 3.5, 3.6 and 3.7. Also, although it is not strictly required, the usage of a virtualenv is highly recommended in order to avoid...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next