Showing 6 open source projects for "machine learning python"

View related business solutions
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 1
    Best-of Python

    Best-of Python

    A ranked list of awesome Python open-source libraries

    This curated list contains 390 awesome open-source projects with a total of 1.4M stars grouped into 28 categories. All projects are ranked by a project-quality score, which is calculated based on various metrics automatically collected from GitHub and different package managers. If you like to add or update projects, feel free to open an issue, submit a pull request, or directly edit the projects.yaml. Contributions are very welcome! Ranked list of awesome python libraries for web...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 2
    Bytewax

    Bytewax

    Python Stream Processing

    Bytewax is a Python framework and Rust distributed processing engine that uses a dataflow computational model to provide parallelizable stream processing and event processing capabilities similar to Flink, Spark, and Kafka Streams. You can use Bytewax for a variety of workloads from moving data à la Kafka Connect style all the way to advanced online machine learning workloads.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    Pyper

    Pyper

    Concurrent Python made simple

    Pyper is a Python-native orchestration and scheduling framework designed for modern data workflows, machine learning pipelines, and any task that benefits from a lightweight DAG-based execution engine. Unlike heavier platforms like Airflow, Pyper aims to remain lean, modular, and developer-friendly, embracing Pythonic conventions and minimizing boilerplate.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    SageMaker Spark Container

    SageMaker Spark Container

    Docker image used to run data processing workloads

    Apache Spark™ is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Structured Streaming for stream processing. The SageMaker Spark Container is a Docker image used to run batch data processing workloads on Amazon SageMaker using the Apache Spark framework. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Run applications fast and securely in a fully managed environment Icon
    Run applications fast and securely in a fully managed environment

    Cloud Run is a fully-managed compute platform that lets you run your code in a container directly on top of Google's scalable infrastructure.

    Run frontend and backend services, batch jobs, deploy websites and applications, and queue processing workloads without the need to manage infrastructure.
    Try for free
  • 5
    Fondant

    Fondant

    Production-ready data processing made easy and shareable

    Fondant is a modular, pipeline-based framework designed to simplify the preparation of large-scale datasets for training machine learning models, especially foundation models. It offers an end-to-end system for ingesting raw data, applying transformations, filtering, and formatting outputs—all while remaining scalable and traceable. Fondant is designed with reproducibility in mind and supports containerized steps using Docker, making it easy to share and reuse data processing components. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Padasip

    Padasip

    Python Adaptive Signal Processing

    ...Padasip supports both supervised and unsupervised filtering modes and is built to be modular and extensible, making it easy to integrate into larger machine learning pipelines or control systems.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next