Showing 11 open source projects for "jpk data processing"

View related business solutions
  • Deploy Apps in Seconds with Cloud Run Icon
    Deploy Apps in Seconds with Cloud Run

    Host and run your applications without the need to manage infrastructure. Scales up from and down to zero automatically.

    Cloud Run is the fastest way to deploy containerized apps. Push your code in Go, Python, Node.js, Java, or any language and Cloud Run builds and deploys it automatically. Get fast autoscaling, pay only when your code runs, and skip the infrastructure headaches. Two million requests free per month. And new customers get $300 in free credit.
    Try Cloud Run Free
  • 99.99% Uptime for MySQL and PostgreSQL on Google Cloud Icon
    99.99% Uptime for MySQL and PostgreSQL on Google Cloud

    Enterprise Plus edition delivers sub-second maintenance downtime and 2x read/write performance. Built for critical apps.

    Cloud SQL Enterprise Plus gives you a 99.99% availability SLA with near-zero downtime maintenance—typically under 10 seconds. Get 2x better read/write performance, intelligent data caching, and 35 days of point-in-time recovery. Supports MySQL, PostgreSQL, and SQL Server with built-in vector search for gen AI apps. New customers get $300 in free credit.
    Try Cloud SQL Free
  • 1
    Bytewax

    Bytewax

    Python Stream Processing

    ...Bytewax is a Python framework and Rust distributed processing engine that uses a dataflow computational model to provide parallelizable stream processing and event processing capabilities similar to Flink, Spark, and Kafka Streams. You can use Bytewax for a variety of workloads from moving data à la Kafka Connect style all the way to advanced online machine learning workloads. Bytewax is not limited to streaming applications but excels anywhere that data can be distributed at the input and output.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Pathway

    Pathway

    Python ETL framework for stream processing, real-time analytics, LLM

    ...Unlike traditional batch processing frameworks, Pathway continuously updates the results of your data logic as new events arrive, functioning more like a database that reacts in real-time. It supports Python, integrates with modern data tools, and offers a deterministic dataflow model to ensure reproducibility and correctness.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    SageMaker Spark Container

    SageMaker Spark Container

    Docker image used to run data processing workloads

    Apache Spark™ is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Structured Streaming for stream processing.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Fondant

    Fondant

    Production-ready data processing made easy and shareable

    Fondant is a modular, pipeline-based framework designed to simplify the preparation of large-scale datasets for training machine learning models, especially foundation models. It offers an end-to-end system for ingesting raw data, applying transformations, filtering, and formatting outputs—all while remaining scalable and traceable. Fondant is designed with reproducibility in mind and supports containerized steps using Docker, making it easy to share and reuse data processing components. It’s built for use in research and production, empowering data scientists to streamline dataset curation and preprocessing workflows efficiently.
    Downloads: 0 This Week
    Last Update:
    See Project
  • $300 in Free Credit for Your Google Cloud Projects Icon
    $300 in Free Credit for Your Google Cloud Projects

    Build, test, and explore on Google Cloud with $300 in free credit. No hidden charges. No surprise bills.

    Launch your next project with $300 in free Google Cloud credit—no hidden charges. Test, build, and deploy without risk. Use your credit across the Google Cloud platform to find what works best for your needs. After your credits are used, continue building with free monthly usage products. Only pay when you're ready to scale. Sign up in minutes and start exploring.
    Start Free Trial
  • 5
    Lithops

    Lithops

    A multi-cloud framework for big data analytics

    ...It abstracts cloud providers like IBM Cloud, AWS, Azure, and Google Cloud into a unified interface and turns your Python functions into scalable, event-driven workloads. Lithops is ideal for data processing, ML inference, and embarrassingly parallel workloads, giving you the power of FaaS (Function-as-a-Service) without vendor lock-in. It also supports hybrid cloud setups, object storage access, and simple integration with Jupyter notebooks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Pyper

    Pyper

    Concurrent Python made simple

    Pyper is a Python-native orchestration and scheduling framework designed for modern data workflows, machine learning pipelines, and any task that benefits from a lightweight DAG-based execution engine. Unlike heavier platforms like Airflow, Pyper aims to remain lean, modular, and developer-friendly, embracing Pythonic conventions and minimizing boilerplate. It focuses on local development ergonomics and seamless transition to production environments, making it ideal for small teams and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    text-dedup

    text-dedup

    All-in-one text de-duplication

    text-dedup is a Python library that enables efficient deduplication of large text corpora by using MinHash and other probabilistic techniques to detect near-duplicate content. This is especially useful for NLP tasks where duplicated training data can skew model performance. text-dedup scales to billions of documents and offers tools for chunking, hashing, and comparing text efficiently with low memory usage. It supports Jaccard similarity thresholding, parallel execution, and flexible...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Padasip

    Padasip

    Python Adaptive Signal Processing

    Padasip (Python Adaptive Signal Processing) is a Python library tailored for adaptive filtering and online learning applications, particularly in signal processing and time series forecasting. It includes a variety of adaptive filter algorithms such as LMS, RLS, and their variants, offering real-time adaptation to changing environments. The library is lightweight, well-documented, and ideal for research, prototyping, or teaching purposes. Padasip supports both supervised and unsupervised...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Wally

    Wally

    Distributed Stream Processing

    ...Provide high-performance & low-latency data processing. Be portable and deploy easily (i.e., run on-prem or any cloud). Manage in-memory state for the application. Allow applications to scale as needed, even when they are live and up-and-running. The primary API for Wally is written in Pony. Wally applications are written using this Pony API.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Cut Data Warehouse Costs up to 54% with BigQuery Icon
    Cut Data Warehouse Costs up to 54% with BigQuery

    Migrate from Snowflake, Databricks, or Redshift with free migration tools. Exabyte scale without the Exabyte price.

    BigQuery delivers up to 54% lower TCO than cloud alternatives. Migrate from legacy or competing warehouses using free BigQuery Migration Service with automated SQL translation. Get serverless scale with no infrastructure to manage, compressed storage, and flexible pricing—pay per query or commit for deeper discounts. New customers get $300 in free credit.
    Try BigQuery Free
  • 10
    Sed.py is a python module to provide a easy way to do text stream processing. Just like the name of module, it likes to do the work that sed can do. But not in sed's way, it's in Python's way. To use this module, the knowledge of regexp is necessary.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    StreamMine is a distributed event processing (streaming) infrastructure. You can create low-latency, fault-tolerant stream processing functionality with any stream-oriented operators that can be implemented in Python.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.
Try Free →